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The spectral transform method using a double Fourier series as orthogonal basis
functions as in Cheong (2000,J. Comput. Phys.157, 327) is extended to the solution
of the shallow-water equations on a sphere. A spectral filter which mimics the implicit
diffusion process with the third-order Laplacian operator is applied to the spectral
components of predicted variables to prevent the aliasing error or nonlinear instability.
For a predicted variable the spectral filter needs only about 76N2 operations withN
being the zonal and meridional wavenumber truncation. The use of the filter even
at every time step does not deteriorate the computational efficiency of the double-
Fourier-series model, which comes from the availability of FFTs. The filter requires
an additional memory for only 6N2 elements, so the total memory space ofO(N2)
is sufficient in the present model. Along with the incorporation of the polar filter,
the semi-implicit time-stepping procedure contributes to a significant increase in the
time-step size.

A standard test set proposed by Williamsonet al.(1992,J. Comput. Phys.102, 211)
is used to evaluate the errors associated with the new method for various resolutions. It
is shown that as a whole the accuracy of the method is comparable to that of spherical
harmonics model (SHM) though the present method provides more accurate time
integration for some cases but does not for other cases. A long time-integration far
beyond the period specified in the standard test set also illustrates almost the same
accuracy as that given by the SHM. The relative efficiency of the method to the SHM
appears from the resolution of 256× 128 transform grids, and it becomes significant
for resolutions higher than 512× 256. The computational efficiency is expected to
increase further with an improved FFT algorithm. The test results suggest that the new
method could be extended to three-dimensional numerical models used for weather
prediction. c© 2000 Academic Press
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1. INTRODUCTION

Cheong [3] showed that the spectral transform method using a double Fourier series (half-
ranged sine or cosine series in the meridional direction) as orthogonal basis functions can
be successfully applied to the time integration of the vorticity and advection equations on
a spherical domain with accuracy and efficiency. The double-Fourier-series model (DFM)
has several advantages over the spherical harmonics model (SHM), which is the most
commonly accepted atmospheric general circulation model [7], including computational
efficiency, a uniform grid interval, and a memory requirement of onlyO(N2) elements.
The operation count for the method is in generalO(N2 log N) while it is O(N3) for the
SHM. The basis functions defined on transform grids, consisting ofO(N3) elements, are
no longer necessary in the method. In addition, both the orthogonality and orthonormality
among the basis functions are better than those for the spherical harmonic functions. As
in the spherical harmonics model [9], computational time can be saved to a large extent
through the reduction of zonal transform grids in polar regions. One of the most important
features of the DFM in Cheong [3], which does not exist in other double-Fourier-series
models (e.g., [1, 20]), is the invertibility of the elliptic equation withO(N2) operations.

The double-Fourier-series model used in Cheong [3] has a minor point as well that the
spherical harmonics filter (SHF) should be employed to eliminate nonlinear instability. The
operation count for the filter is justN3. Therefore the use of it at every time step deteriorates
the efficiency of the DFM. Moreover, the eigensolutions of the Laplacian operator must be
calculated for each zonal wavenumber and stored to be used as a spectral filter (the storage
for N3 elements is necessary). Of course, different sets of eigensolutions are needed when
the resolution of the numerical model is altered. Although in the test calculations using the
advection and vorticity equations Cheong [3] showed that the intermittent use of a SHF is
sufficient for the prevention of nonlinear instability, whether it also works for more general
cases is not made clear. Even though such a method works for these cases, it will be desirable
to construct a simpler spectral filter that can provide the needed accuracy and stability of
the model.

A double Fourier-series expansion over the sphere can also be found in the works of
Boer and Steinberg [1] and Spotzet al. [20], where the meridional Fourier expansion is
carried out along the great circle passing over the poles in order to keep the 2π -periodicity.
For the method of Boer and Steinberg [1] a constraint on the spectral coefficients is nec-
essary so as to satisfy the pole condition that the amplitude of the zonal wave component
must vanish at the poles. A long time integration of nonlinear equations with this method
cannot be accomplished because the spectral coefficients do not satisfy trivially the nec-
essary condition. However, the pseudospectral method of Spotzet al. [20] does not need
any constraint like this because the Fourier transform on meridians is taken only when
the differentiation on grid points is carried out. Nevertheless, the nonlinear instability is
unavoidable in this method without using a well-designed filter. Spotzet al.demonstrated
that a spherical harmonics projection operator (SHPO; also commonly referred to as “a
spherical harmonics filter” [23]) can be a cure for such a numerical instability. An efficient
SHPO which interpolates the grids onto the Gaussian latitudes was introduced by [11]. A
flexible SHPO with a reducedO(N3) operation applicable to an arbitrary distribution of
latitudinal points has been recently developed [23]. In principle, time savings through the
reduction of zonal transform grids in polar regions cannot be achieved in the pseudospectral
method, in contrast to the method of Cheong [3].
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In an attempt to overcome the severe degradation of performance at high resolutions for
SHM, recently several new methods [19, 21, 24] which employ coordinate systems other
than longitude–latitude have also been developed. The coordinate systems used there are
capable of providing a uniform grid resolution over the sphere. They were found to produce
an accurate and stable time integration for time-dependent nonlinear differential equations
with substantial time savings for high resolutions. One of the most notable features of these
new methods is the feasibility of local mesh refinement, although the assessment of accuracy
and performance in such a case has not been reported yet. For these methods, the inversion
of elliptic equations is not possible or needs a rather complicated numerical procedure such
as an iteration method.

In this study, we extend the method of Cheong [3] to the shallow-water equations with the
standard test suite proposed by Williamsonet al. [26], which were used by various authors
[10, 19, 20, 24] to assess the accuracy or stability of numerical methods. Computational
efficiency is of great concern for DFM along with accuracy and simplicity. With this in
mind, we introduce a spectral filter consisting of high-order diffusion operators rather than
use the SHF of Cheong [3], because we want to implement a filter that needs onlyO(N2)

operations and storage of the same order. While the SHF in [3] provides a sharp cutoff of the
spherical harmonics whose total wavenumber is higher than the prescribed wavenumber,
the diffusion-operator filter (hereafter called simply the “spectral filter”) produces a smooth
response with the horizontal scale, as the term diffusion would indicate.

The remainder of the paper consists of four sections: Section 2 describes the procedure
to get the spectral forms of the shallow-water equations on a sphere written in a vorticity–
divergence scheme. Section 3 is devoted to the design of a spectral filter for the prevention
of nonlinear instability. Test results of the method based on the standard test suite are
presented in Section 4. The results of the extended time integration are also shown for
a particular test case at the end of Section 4. A discussion and conclusions are given in
Section 5.

2. SHALLOW-WATER EQUATIONS AND SPECTRAL REPRESENTATION

2.1. Shallow-Water Equations

The shallow-water equations using a vorticity–divergence scheme in flux form [22, 26]
scaled by the radiusa and inverse rotation rateÄ−1 of the earth are written as

∂ζ

∂t
= −1

sin2 φ

[
∂

∂λ
U (ζ + f )+ sinφ

∂

∂φ
V(ζ + f )

]
, (2.1a)

∂δ

∂t
= +1

sin2 φ

[
∂

∂λ
V(ζ + f )− sinφ

∂

∂φ
U (ζ + f )

]
−∇2

[
8′ +8s+ U2+ V2

2 sin2 φ

]
, (2.1b)

∂8′

∂t
= −1

sin2 φ

[
∂

∂λ
U8′ + sinφ

∂

∂φ
V8′

]
− 8̄δ, (2.1c)

whereλ is longitude andφ = latitude+ π/2, U ≡ u sinφ and V ≡ v sinφ with u and
v being the longitudinal and latitudinal component of the velocities, respectively, and
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f (≡ −2 cosφ) is the Coriolis parameter;8s is the surface geopotential (=ghs; g and
hs are the gravitational acceleration and topography, respectively);8′ is defined asgh′ with
h′ being the deviation of the fluid depth (h∗) from the time-invariant global-mean height
(h̄): 8′ = gh∗ − 8̄ with 8̄ = gh̄. The vorticityζ and divergenceδ are defined in terms of
velocity components as

ζ = 1

sin2 φ

{
∂V

∂λ
− sinφ

∂U

∂φ

}
, (2.2a)

δ = 1

sin2 φ

{
∂U

∂λ
+ sinφ

∂V

∂φ

}
. (2.2b)

Dividing the velocity into rotational and divergent components such that

U = −sinφ
∂ψ

∂φ
+ ∂χ
∂λ
, (2.3a)

V = +sinφ
∂χ

∂φ
+ ∂ψ
∂λ
, (2.3b)

we can express the vorticity and divergence in terms of the streamfunction and velocity
potential:

ζ = ∇2ψ, (2.4a)

δ = ∇2χ, (2.4b)

∇2 ≡ 1

sin2 φ

{
∂2

∂λ2
+ sinφ

∂

∂φ
sinφ

∂

∂φ

}
. (2.4c)

Shallow-water equations in flux forms are simpler and require less computations than
those in advective forms. Although for a particular case such as the stationary Rossby–
Haurwitz wave the flux forms provide a slightly decreased accuracy [3], we have found that
the accuracy is rather insensitive to the detailed formulations of the governing equations for
the standard test suite (see also [22]).

2.2. Spectral Representation with a Double Fourier Series

As in Cheong [3], a true scalar function is represented with the truncated double Fourier
series. For example, the vorticity is expanded as

ζ(λ, φ, t) =
M∑

m=−M

ζm(φ, t)e
imλ (2.5a)

ζm(φ, t) =


∑N

n=0 ζn,m(t) cosnφ for m= 0, (2.5b)∑N
n=1 ζn,m(t) sinnφ for oddm, (2.5c)∑N
n=1 ζn,m(t) sinφ sinnφ for evenm(6= 0), (2.5d)

where i = √−1, m(n) is the zonal (meridional) wavenumber, andM(N) is the largest
wavenumber for the zonal (meridional) direction. The spectral componentζn,m is obtained
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by the half-ranged Fourier transform of eitherζm(φ, t) for m= 0 and oddm or ζm(φ, t)/
sinφ for evenm(6= 0), for which onlyO(N2 log N) operations are necessary.

The spectral coefficients for the streamfunction and velocity potential are obtained
from those of the vorticity and divergence by solving Poisson’s equation as illustrated
in [3],

Aζ = Dψ, (2.6)

where A and D are tridiagonal matrices ofN/2× N/2 or (N/2+ 1)× (N/2+ 1), and
ζ andψ are vectors ofN/2 or (N/2+ 1) elements consisting of the spectral components
of the vorticity and streamfunction, respectively. If the vorticity (streamfunction) is given,
the streamfunction (vorticity) is obtained by solvingψ = D−1Aζ (ζ = A−1Dψ) with an
efficient Gaussian elimination procedure which requiresO(N M) operations.

The spectral coefficients of the velocity components are calculated from the diagnos-
tic relations in Eq. (2.3) with the meridional truncations one level above those of the
streamfunction and velocity potential, respectively. The spectral form for evenm (6= 0)
differs from those for oddm andm= 0 because of the parity function attached to the sine
series:

Un,m =
{

imχn,m + n{ψn+1,m − ψn−1,m}/2, evenm(6= 0); (2.7a)

imχn,m + {(n+ 1)ψn+1,m − (n− 1)ψn−1,m}/2, oddm,m= 0; (2.7b)

Vn,m =
{

imψn,m + n{χn−1,m − χn+1,m}/2, evenm(6= 0); (2.7c)

imψn,m + {(n− 1)χn−1,m − (n+ 1)χn+1,m}/2, oddm,m= 0. (2.7d)

The nonlinear terms are evaluated by the transform method [16]. Detailed procedures for
this including the location of transform grids can be found in [3]. The spectral forms of the
vorticity and divergence equation are written as

d

dt
ζn,m =

{
−imXn,m + {(n− 2)Yn+1,m − (n+ 2)Yn−1,m}/2, evenm(6= 0); (2.8a)

−imXn,m + {(n− 1)Yn+1,m − (n+ 1)Yn−1,m}/2, oddm,m= 0; (2.8b)

d

dt
ζ1,0 = −2Y0,0; (2.8c)

d

dt
δn,m =


imYn,m − [∇28′]n,m − En,m + {(n− 2)Xn+1,m

− (n+ 2)Xn−1,m}/2, evenm(6= 0); (2.9a)

imYn,m − [∇28′]n,m − En,m + {(n− 1)Xn+1,m

− (n+ 1)Xn−1,m}/2, oddm,m= 0; (2.9b)

d

dt
δ1,0 = −[∇28′]1,0− E1,0− 2X0,0; (2.9c)

whereXn,m andYn,m are the spectral coefficients of the nonlinear termsU (ζ + f )/sin2 φ

and V(ζ + f )/sin2 φ, respectively, andδn,m and En,m are those of the divergence and
∇2{8s + (U2+ V2)/2 sin2 φ}. For the nonlinear terms, we have to get the velocities and
the vorticity on the grid points by the inverse Fourier transform. The spectral form of the
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TABLE I

The Resolution and Time-Step Size

Model N(=M) K × J 1t (s)

M20 20 64× 32 1440
M42 42 128× 64 720
M84 64 256× 128 360

geopotential equation is given by

d

dt
8′n,m =


−im An,m − 8̄δn,m + {(n− 2)Bn+1,m

− (n+ 2)Bn−1,m}/2, evenm(6= 0); (2.10a)

−im An,m − 8̄δn,m + {(n− 1)Bn+1,m

− (n+ 1)Bn−1,m}/2, oddm,m= 0; (2.10b)

d

dt
8′1,0 = −8̄δ1,0− 2B0,0, (2.10c)

where8′n,m denotes the spectral transform of8′(λ, φ) and An,m and Bn,m are the spec-
tral coefficients ofU8′/sin2 φ andV8′/sin2 φ, respectively. The(N + 1, 0) component
of the spectral coefficients corresponding to the meridional advection terms should be dis-
carded [3].

The number of transform grids in longitude(K ) and latitude(J) is set byK ≥ 3M + 1
andJ ≥ (3N + 1)/2, respectively. These are appropriate conditions for the triangular trun-
cation for spherical harmonics models. Table I presents the number of grids, the wave
truncation, and the size of the time step used in this study. It should be emphasized that the
aliasing error is inherent in the present model because the spectral expansion in Eq. (2.5)
actually includes the wave components corresponding to the rhomboidal truncation. The
numerical method to prevent the aliasing error or nonlinear instability will be presented
in Section 3. As in previous studies [1, 3, 12, 20], the Fourier filter is used to filter out
the higher zonal-wavenumber components from the Fourier transform of a field variable
(e.g.,ζm(φ, t)) in the vicinity of the poles. We adopt the type used by [3], in which the
coefficients of the zonal Fourier transform such asζm(φ, t) are made zero provided that
m> (M − 3) sinφ + 4.

All the variables are set in double precision throughout the numerical experiments, for
which floating points of 15 digits are available. To perform one time-step marching, 9
spectral transforms, either forward or inverse, are necessary. The spectral equations of
(2.8)–(2.10) are time integrated with a leap frog scheme, using a constant time -increment
1t except for three initial time steps. To reduce the possibility of an initial shock, we begin
with a forward scheme using a smaller time increment1t/4, which is followed by two time
steps of leap frog schemes with1t/4 and1t/2, respectively [14]. For some test cases we
use a time filter [18] with a coefficient of 0.02 to suppress the computational mode.

2.3. Semi-Implicit Time Integration and the Elliptic Equation

To suppress the undesirable gravity oscillations and consequently to take a large time
step, we introduce the semi-implicit method for time integration: The geopotential in the
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divergence equation and the linear divergence term in the geopotential equation are dealt
with implicity. The spectral representation for the semi-implicit method is illustrated with
the formulas

δ(p+1) = δ(p−1) − 21t∇28′(p+1) + G(p)
δ , (2.11a)

8′(p+1) = 8′(p−1) − 21t8̄δ(p+1) + G(p)
8 , (2.11b)

where the superscript (p) denotes the present time step while(p− 1) and(p+ 1) denote
the previous and the future one, respectively, and whereG(p)

δ andG(p)
8 are the remaining

terms. These can be rearranged into a Helmholtz-type elliptic equation for the divergence,
which is solved easily through the inversion of the tridiagonal matrix [3]

(1− ε∇2)δ(p+1) = H, (2.12)

whereε = 8̄(21t)2 andH is the forcing function to be determined from Eqs. (2.11).
Since the divergence is expressed as a Laplacian of the velocity potential as in

Eq. (2.4b), its global mean should vanish. Therefore the global mean ofH should also
vanish. In the course of the time-marching procedure, however, this cannot always be sat-
isfied trivially, because of machine rounding errors. Therefore, we have to subtract the
global mean fromH (see Eq. (3.10) in [3] for the global averaging) prior to inversion of the
elliptic equation. With this modified forcing function,δ(p+1)

0,0 may have an arbitrary value
as a solution, but it should be changed to meet the condition that the global mean is zero,
i.e.,

w = −
N/2∑
n=1

[
δ
(p+1)
2n,0

/
(1− (2n)2)

]
, w→ δ

(p+1)
0,0 .

For the same reason, the global mean of the vorticity must be eliminated from the predicted
value.

If we are to invert a Helmholtz-type elliptic equation in which the forcing function
does not necessarily vanish (this is the case of spectral filtering in Section 3), the above
procedure to get a solution is subject to a minor change. We first remove the global average,
sayH̄ , from the forcing function prior to inversion. After inversion, the spectral components
(n,m) = (0, 0) of the inverted variable should be rearranged in such a way that its global
mean becomes̄H . The necessity of the manipulations with respect to the(0, 0) component
arises from the matrix structure that all the elements of the first column inD as in Eq. (2.6)
vanish for even modes ofm= 0. An alternative method for the inversion of this case can
be found because the spectral components are represented exactly as the sum of Legendre
polynomials form= 0 (see also Section 3). The detailed procedure for the alternative
method is shown in the Appendix. The increase in the computational burden due to this
method is almost negligible. Both methods will give results similar to each other in principle.
It has been found, however, that the method in the Appendix gives more accurate results
than that stated above. So we adopt the method described in Appendix for the inversion of
the even mode ofm= 0.
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3. SPECTRAL FILTERING

3.1. Eigenvalues and Eigenvectors of the Laplacian Operator

With the spectral representations in Section 2, the Laplacian operator can be written in a
standard eigensystem (e.g., [3]). Similar eigensystems and their eigensolutions, discretized
with double Fourier series which are different from those adopted in this study, are discussed
in Orszag [17] and Boyd [2]. In principle, for fixedm (≥3) there arem− 1 eigenmodes
for oddm andm− 2 for evenm from the last (i.e., smallest meridional scale) that are not
identical to the (surface) spherical harmonics (i.e., exact eigensolutions of the Laplacian
operator). This is easily understood if it is remembered that spherical harmonics may be
represented as a cosine series with them-th power of the sine of the colatitude [13]. All
modes form (≤2) are identical to those of spherical harmonics. In other words, only spher-
ical harmonics within the triangular truncation are calculated correctly with the double-
Fourier-series expansion. In the sense that the structures of spherical harmonics correspond
to those of the Rossby–Haurwitz waves, which are the normal modes of the linearized
vorticity equation in a quiescent environment [8], the wrong eigensolutions in the double-
Fourier-series expansion may be called unphysical modes [25].

To see the difference of the calculated eigenvalues(Cl ) of the Laplacian operator from
the theoretical one(−l (l + 1)) in detail, the ratioRl defined as log[−Cl/ l (l + 1)] is
presented in Fig. 1 forM = N = 64. Herel is the total wavenumber-like index of the
spherical harmonic functions; i.e.,l equals the zonal wavenumberplus the number of
nodal point between poles. The wave components lying on the line parallel to the diagonal
running from left-up to right-down have the samel . It is noteworthy that the number of
incorrect eigensolutions are smaller than was expected above (see also [2]) for the zonal
wavenumbers larger thanme(=30 in this case), and the contours ofRl exhibit steplike vari-
ation. The reasons for these differences are not yet clear. For the incorrect eigensolutions,
the deviation from the theoretical value becomes severe as the zonal wavenumber decreases
for fixed l and increases withl for fixedm. As one could expect, the unphysical mode gives

FIG. 1. Distribution of Rl defined as log[−Cl / l (l + 1)], whereCl and−l (l + 1) are the calculated and
theoretical eigenvalues of the spherical Laplacian operator forM = N = 64, respectively. The definition ofl
is found in the text. Contour interval is 0.2 and the solid and dashed lines representRl ≥ 1.0 and Rl < 1.0,
respectively. The solid thick line is forRl = 1.0 and the region marked with dots denotesRl = 0. For the zonal
wavenumberm≤ 2, Rl = 0 (not shown in this figure).
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very poor orthogonality. (The orthogonality between two modes can be calculated with
spectral coefficients following the formula for global integration of the quadratic term [3].)

The wrong eigensolutions will give rise to a numerical error when one evaluates the
terms including the Laplacian operator or the nonlinear terms [3]. At the same time, it
causes a severe restriction on the time-step size in the time-stepping procedure that includes
the Laplacian operator [17]. The number of transform grids in this study was determined
according to the 2/3 rule to prevent the aliasing error, which is an appropriate setting for
the triangular truncation in a model of spherical harmonics base. Therefore the existence
of the eigensolutions corresponding to wavenumbers beyond the triangular truncation may
generate an aliasing error. For these reasons, it will be desirable to filter out the unphysical
modes as well as the higher modes beyond the triangular truncation.

It is found that the SHF used in [3] should be applied at every time step to prevent
the nonlinear instability for the shallow-water test cases proposed by [26]. This obviously
deteriorates the efficiency of the DFM, in which the typical operation count isO(N2 log N).
This motivates us to find a more efficient filter than the SHF in [3].

3.2. Spectral Filtering as a Diffusion Process

In this study, we tried to design an efficient and simple spectral filter that is suitable not
only for prevention of the nonlinear instability but also for accurate numerical integration.
The simplest way to do this may be to consider a strongly scale-dependent diffusion process
such that

∂Q

∂t
= −c1∇4Q+ c2∇6Q, (3.1)

whereQ is the variable to be filtered,c1 andc2 are positive constants, and all variables
are nondimensional. To avoid severe restrictions onc1 andc2 (or the time-step size for
this filtering process), the implicit time integration should be chosen. For the spherical
harmonics model, implicit time integration with higher order Laplacian operators is trivial.
However, it is not the case in this study. It must be accomplished by a successive inversion
of Helmholtz equations. For convenience in the numerical procedure, we rewrite Eq. (3.1)
with positivec3 as

∂Q

∂t
= −c3∇2Q+ c3∇2Q− c1∇4Q+ c2∇6Q. (3.2)

This equation can be discretized in time with an implicit method except for one of the
harmonic diffusion terms by assuming that one time step is1t ; this gives

Q(p+1) = Q(p) − c∗3∇2Q(p) + c∗3∇2Q(p+1) − c∗1∇4Q(p+1) + c∗2∇6Q(p+1), (3.3)

wherec∗i = ci1t (i = 1, 2, 3). ThenQ(p+1) (hereafter denoted asQ f ), the filtered variable
of Q(p)(≡Q), is obtained by solving successively the Helmholtz–type elliptic equations

(1− c4∇2)[(1− c5∇2){(1− c6∇2)Q f }] = (1+ c∗3∇2)Q, (3.4)

wherec4, c5, andc6 are determined fromc∗1, c
∗
2, andc∗3. The numerical algorithm for the

solutionQ f with spectral representation is shown in detail in [3]. To make Eq. (3.4) into a
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simpler form, we first fixc∗1 and givec∗2 = γ 3 andc∗3 = 3γ with γ =√c∗1/3:

(1− γ∇2)3Q f = (1− 3γ∇2)Q. (3.5)

Now γ is the only parameter in this spectral filter and usuallyγ ¿ 1. Thus the coefficient
for the second term is much smaller than that for the first in Eq. (3.1). In other words,
spectral filtering of this type is basically equivalent to using the biharmonic filter, but higher
modes are more severely damped compared to the biharmonic filter. One can determine the
filter viscosity based on physical reasoning, e.g., by specifying the damping rate of a certain
mode, as is usually done in the SHM.

In Fig. 2 the amplitude ratioR= (Qm
l ∗)

f /Qm
l ∗ for various γ is presented, where

m (=3, 4, . . . ,64) and l ∗ (=0, 1, 2, . . . ,64) are the zonal wavenumber and meridional
mode number of the eigensolutions. The amplitude ratio must lie between 0 and unity.
As is expected, the overall response increases (i.e.,R becomes smaller) asγ increases,
and it increases with bothm andl ∗. With γ = (5 · 2π)−1/3/(64 · 65) the strongest response
for which the amplitude ratio of the filtered mode to the unfiltered is smallest reaches

FIG. 2. Distribution of R defined as the ratio of the filtered to unfiltered eigensolutions of the Laplacian
operator, for the zonal wavenumberm≥ 3. Contour interval is 0.1 and the solid and dashed lines represent
R≥ 0.5 andR< 0.5, respectively. The solid thick line is forR= 0.5 and the region marked with dots denotes
R> 0.95. The coefficients of the spectral filterγ for (a), (b), (c), and (d) are 7.62× 10−5, 5.28× 10−5, 2.81×
10−5, and 1.64× 10−5, respectively.
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TABLE II

Coefficients of the Spectral Filter

γ

Model Test cases 1, 5, and 6 Test case 7

M20 5.312× 10−5 10.624× 10−5

M42 2.112× 10−5 4.224× 10−5

M84 0.830× 10−5 0.166× 10−4

nearly 10−4. When it isγ = (500· 2π)−1/3/(64 · 65), the strong response is more or less
concentrated at the largerm and l ∗. One thing to be emphasized is that even though the
total wavenumber is the same, the larger amplitude loss is observed for the smaller zonal
wavenumber. This is the property of the spectral filter which is most different from those
used in [3]. Although the steplike variation of the responses is also present in Fig. 2, it
disappears for the modes within the triangular truncation even in the case that the filter
viscosityγ is large (see Fig. 2a).

As will be seen later, ifγ is chosen appropriately the nonlinear instability does not
appear in a time-marching problem. Too large a value ofγ will result in excessive damping
of the low wavenumber while too small aγ may be not enough to prevent the nonlinear
instability. In Table II, we present the coefficients of the spectral filter for various model
resolutions, which are found to be appropriate in the test cases of the present study. Note
thatγ decreases with the resolution. In a qualitative sense the spectral filter resembles the
implicit viscosity (or diffusivity), but they are different from each other particularly in the
case where semi-implicit time stepping is incorporated.

Let us consider the computational efficiency of the filter. Application of the filter to
the variableQ with spectral representation requires performing three inversions and a
forward operation of the Laplacian operator. For the sake of the efficiency of the filter,
prehandling of the matrices in Eq. (2.6) is necessary to prepare the modified matrices
for each zonal wavenumber. The total memory space of 6N2 elements is sufficient for the
modified matrices. Application of the filter to a field variable in the spectral space needs only
the operation count of (76N2+ 36N). Before time marching of the prognostic variables,
we apply the filter to the initial field. After the first time step, it is applied to the predicted
variables at every time step, i.e., variables at time step (p+ 1).

4. TEST RESULTS

Williamsonet al. [26] proposed a test suite for the numerical solutions of the shallow-
water equations, consisting of seven cases: Four test cases have analytic solutions while
the remaining three cases do not. Various error measures used to assess the accuracy of a
new method are described in detail. For the cases which have no closed solutions, the errors
should be measured as the differences of the solutions from those of high-resolution spher-
ical harmonics models such as the NCAR T213. In this study, we produced the reference
solutions from a T213 model which was independently coded by the author. Accuracy of
the Legendre functions used in this code can be found in Cheong [3].

Detailed mathematical formulas for the standard test cases can be found in [26]. Here we
describe the test cases as briefly as possible. For some test cases, the earth’s rotation axis is
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made to have an angleα from the coordinate axis to investigate the so-called pole problem
which could be caused by using the spherical coordinate system. In addition to the standard
test cases, an extra test result for test case 5 is presented in Section 4.3.

4.1. Standard Test Cases 1–4

Test case 1is the advection of the cosine-bell height field with maximum value of 1000 m
by the nondivergent super-rotation flow (the divergence field is made zero for this test case).
The direction of the flowα is varied from 0 toπ/2: The center of the cosine bell is advected
along a great circle which makes an angleα with the equator. Some solutions using the
double Fourier series are shown in [3] where a spherical harmonics filter was used. In this
study, the results with the spectral filter described in Section 3 are presented. The advecting
flow u0 is given to be about 40 m/s which gives one evolution per 12 days. Figure 3a
shows the error growths ofl1(h) and l2(h) with time for α = π/2− 0.05 and M42. The
signal of passing the north pole that was not present in the experiment with the SHF [3] is
evident around day 3 for bothl1(h) andl2(h), with a stronger signal forl1(h). l1(h) steadily
increases before day 3 but after passing the north pole it does not vary significantly with time.
The results forα = 0.05 andπ/4 exhibit an error level similar to that forα = π/2− 0.05,
but the signal of passing the north pole disappears forα = 0.05 and is weakened forα =
π/4. Figure 3b illustrates how thel2(h) error at day 12 varies with the model resolution.
One can find a very good convergence rate of the solutions.

As in [3] where the SHF was used, the spatial structure of the calculated cosine bell is
almost exactly overlapped with the theoretical cosine bell (not shown here). The spatial
structure of the error field is also very similar to that in [3]. As in other numerical methods
[10, 24], the most significant errors are found over the cosine bell and the spectral ringing is
seen over the sphere. The conservation property of a numerical method is a very important
factor. This is checked by taking the ratio [h]t/[h]0 where [h]t and [h]0 are the global
integral of height field at timet and initial condition, respectively. The ratio was found to
remain on the order of 10−15 during one evolution forα = π/2− 0.05.

Test case 2is the zonal geostrophic flow of super-rotation which is rotated poleward by
an angleα. The geostrophic flowu0 on the equator is about 40 m/s. The spectral filter is not

FIG. 3. (a) Time variation ofl1(h) in dashed lines andl2(h) in solid lines for test case 1 withα = π/2− 0.05
and M42. (b) Sensitivity ofl2(h) error at day 12 to the model resolution forα = π/2− 0.05.
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FIG. 4. Time variation ofl1(h), l2(h), andl∞(h) for test case 2 withα = π/2− 0.05 and M42.

used in this case. Figure 4 shows the time evolution of height errorsl1(h), l2(h), andl∞(h)
for α = π/2− 0.05 and M42 on a logarithmic scale. Error levels remain on the order of
10−14 during the 5-day integration, exhibiting oscillation with time. Note that the lines for
l1(h) andl2(h) almost perfectly overlap. The amplitude of oscillation reaches nearly one
order forl1(h) andl2(h) while it remains in nearly half an order forl∞(h). Forα = 0.05,
however, the amplitude of oscillation is reduced to a significantly lower value as shown in
Fig. 5a. These oscillations are due to sampling errors (see also [10, 24]). Forα = 0.05, l1(h)
andl2(h) increase slowly with time, butl∞(h) does remain almost at the same error level
during the 5-day integration.

Figure 5b shows the time evolution of thel2(h) error for M20 and M84 withα = π/2−
0.05. It is interesting to note that the accuracy decreases with the resolution, which is also
found in other methods (e.g., Spotzet al. [20]): For the experiment with M20 the error
increases with time, but unlike M42 the amplitude of the oscillation is very small. For M84,
the amplitude of oscillation is smaller than the M42 case, while the error is larger than that
for M42 by nearly one order. The increase of errors with resolution is attributable to the
fact that the flow field is so simple that it can be represented only with the first mode of the
meridional basis functions, and the roundoff errors associated with the matrix inversion as
in Eq. (2.6) increase with the matrix size.

FIG. 5. (a) Time variation ofl1(h), l2(h), andl∞(h) for test case 2 withα = 0.05 and M42. (b) Time variation
of l2(h) for the model resolutions M20 (dashed line) and M84 (solid line) for the caseα = π/2− 0.05.
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Test case 3is the zonal geostrophic flow with compact support. The initial flow and
height field contain more meridional modes than the flow used in test case 2 because the
meridional extent of the flow field is very narrow. So if the model resolution is low, the
initial field cannot be expressed accurately. Spectral filtering was not done for this case.
The initial height field should be obtained from the velocity field given. Unlike as in [26]
where the height field is obtained by an integration, here it is calculated through matrix
inversion, which is much simpler than the integration method. For brevity, we illustrate
the procedure involved in the simple case where the rotation angleα is zero. The balance
equation from which the height field is calculated is

u2 tanθ + ∂8
′

∂θ
+ 2u = 0, (4.1)

whereθ is the latitude. With some manipulations, we can rewrite this equation as the
second-order differential equation

cosθ
∂

∂θ

[
u2 sinθ + cosθ

∂8′

∂θ
+ 2u cosθ

]
= 0. (4.2)

Then8′ can be solved by a matrix inversion as described in [3], taking into consideration
that the second term includes the Laplacian operator with zonal wavenumber of zero and the
remaining terms constitute the forcing function in a Poisson’s equation. In this procedure,
the meridional truncation foru2 sinθ andu cosθ must beN + 1, and8′ has meridional
modes up toN + 2. In a similar manner, the height field can be determined when the
geostrophic flow is not parallel to the latitudinal circles, i.e.,α 6= 0.

Figure 6a shows the time evolution of height errorsl1(h), l2(h), andl∞(h)with α = π/3
and M42. It can be seen thatl∞(h) is larger than bothl1(h) andl2(h) by a factor of about
one order. The errors increase sharply during the first eight hours, accompanied by a rather
slow increase after that. Althoughl1(h) andl2(h) are oscillating with time, the amplitudes
of oscillation decrease with time. The sensitivity of the errorl2(h) to the model resolution
is presented in Fig. 6b. Compared to the case of M42, the accuracy decreased by about four
orders for M20 while it increased by about one and half order for M84.

FIG. 6. (a) Time variation ofl1(h), l2(h), andl∞(h) for test case 3 withα = π/3 and M42. (b) Variation of
l2(h) with the model resolution at day 5 forα = π/3.
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Test case 4is the forced nonlinear system with a translating low which is forced to advect
zonally with eitheru0 = 20 m/s or 40 m/s. In the standard test set [26], the forcing function
is given with the velocity field, while the prediction variables used in this study are the
vorticity and divergence. Since it is trivial to express the momentum forcing in terms of the
vorticity and the divergence using the identities in Eqs. (2.2), the detailed procedure to get
the forcing functions in the present scheme is not shown. When the forcing function is given
in terms of the streamfunction (e.g., Eqs. 128 and 130 in [26]), the vorticity is obtained
through a matrix inversion as in Eq. (2.6).

The forcing functions in this case are time dependent, and they also include the time
derivatives. As stated in Section 2, the predicting scheme in this study is able to incorporate
the semi-implicit method in the time-stepping procedure. The forcing terms are also treated
semi-implicitly in order to keep the consistency in the numerical approach. For this purpose,
the time derivatives in the forcing are incorporated in the model with a finite difference
approximation rather than an analytic expression. A time filter is used in this test case,
while the spectral filter was not introduced. The initial height field is not shown because it
is indistinguishable from those in [10].

The height difference from the analytic solution for M42 at day 5 is illustrated in Fig. 7.
Though the largest error is found over the translating low (the center of each figure), a fairly
large error is also distributed to the north and east of it. It is also noted that the error field
exhibits a wave-train-like structure for which the amplitude decreases with the distance
from the center. The amplitude of the error in theu0 = 40 m/s case is larger than that in the
u0 = 20 m/s case by a factor of about 5. Figure 8a presents the time evolution of thel2(h)
error foru0 = 20 m/s and 40 m/s respectively. It is noted that the lines do not have short
time-scale fluctuations during the integration period [10, 24]. This might be attributable to
the semi-implicit time-stepping procedure. Figure 8b illustrates the error convergence with
the resolution. The error decreased by more than one order when the resolution increased
from M20 to M42 while it decreased only by a factor of 2 when the resolution increased
from M42 to M84.

It should be reported that the time filter affects the accuracy to a certain extent. For exam-
ple, when the time filter is removed in this test case the error level is significantly lowered:
With u0 = 40 m/s,l2(h) errors at day 5 are 5.75× 10−5, 7.63× 10−9, and 2.01× 10−12

FIG. 7. Height error fields at day 5 for test case 4 with (a)u0 = 20 m/s and (b)u0 = 40 m/s for the M42 case.
Positive (negative) values are in solid (dashed) lines.
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FIG. 8. (a) Time variation ofl2(h) for test case 4 with M42. (b) Variation ofl2(h) with the model resolution
at day 5 foru0 = 20 m/s.

for M20, M42, and M84, respectively. However, a long time integration without the time
filter was found to be unstable.

4.2. Standard Test Cases 5–7

Test case 5deals with the zonal flow over an isolated mountain 2000 m high, located at
(90◦W, 30◦N), withα = 0 and the equivalent depthh0 = 5960 m. The initial zonal flow is of
a super-rotation with the maximum wind speed being 20 m/s. Because the analytic solution
is not available in this case, we have calculated the error as the difference from the solution
provided by a high-resolution model, T213. A time filter is used for this and the remaining
cases. Figure 9a shows the time variations of the globally averaged, normalized total-mass
error I (h) for M42 and M84. Note that the total mass increases with time for M84 while
it decreases for M42. The accuracy for M84 increased by about half an order compared to
M42. In Fig. 9b, the normalized total-energy errorI (TE), one of the second-order invariants
without dissipation, is illustrated at the same resolutions as in Fig. 9a. The energy decreases
monotonically with time and the energy-loss rate for M84 is about one-fifth of that for M42.

FIG. 9. (a) Time variation of the normalized total-mass errorI (h) for test case 5. Scale on the left (right)
vertical axis is for M42 (M84). (b) Time variation of the normalized total-energy error.
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FIG. 10. Height field at (a) day 5, (b) day 10, and (c) day 15 for test case 5 with M84. (d) shows the height
difference from T213 at day 15. Contour intervals for (a)–(c) are 50 m and solid (dashed) lines are forh ≥ 5500 m
(h < 5500 m). Contour interval for (d) is 0.4 m with positive (negative) values in solid (dashed) lines. Numerals
over each map are the minimum and maximum values, respectively.

Figure 10 presents the spatial structure of the height field for M84 at 5, 10, and 15 days,
along with the difference from the T213 model at day 15. A large difference is found in
the remote area rather than over the topography, whose amplitude is less than 2 m. Though
the height field also exhibits a quite large wave amplitude in the southern hemisphere, the
error is fairly small there. One interesting feature in this figure is that the largest error exists
in the region where the spatial variation of the height field is rather small. Just southward
downstream of the topography, very small scale errors are distributed. We have found that
they disappear with an enhanced spectral viscosity (not shown).

The normalized difference from the spherical harmonics model T213,l2(h), is given in
Fig. 11. For M42 the error increases sharply in the first day, followed by a slow increase
after that. The error for M84 steadily grows but is just 0.30× 10−4 at day 15, which is

FIG. 11. Time variation ofl2(h) for test case 5.
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about one-fifth of that for M42. Not shown here is the normalized enstrophy error for M42,
which shows a steady exponential decrease until day 12 except for the initial few days
where it remains positive with a maximum value of 0.21× 10−5. After day 12 it shows a
rather slow linear decrease. The normalized enstrophy errors at day 15 are 0.89× 10−4 and
0.15× 10−4 for M42 and M84, respectively.

Test case 6is the stable Rossby–Haurwitz wave of the zonal wavenumber 4. In the absence
of the divergence effect, it translates zonally, preserving the shape. The time variation of the
normalized total-energy errorI (TE) during the first 14 days exhibits a nearly linear increase
for both M42 and M84 (not shown), as was not observed in test cases 1–5. Such a behavior
has also been reported in the numerical experiments using the spherical harmonics model
(see Fig. 5–9b in [10]). Unlike as in [10], however, the short-scale fluctuation is nonexistent
in the present model. As in most of the test cases shown above, the accuracy improves with
the resolution of the model:I (TE)’s at day 14 are 3.37× 10−4 and 1.82× 10−4 for M42
and M84, respectively.

Figure 12 presents the spatial structure of the height field for M84 at days 0, 7, and
14, along with the difference from the spherical harmonics model T213. Large errors are
distributed mainly in the middle and high latitudes. In general the negative anomalies
have local peaks in the high latitudes while the positive anomalies show peaks around
30 degrees in both hemispheres. The time variation ofl2(h), the normalized difference from
the spherical harmonics model T213, is presented in Fig. 13. As a whole the error growth
rate for M42 is larger than that for M84, particularly after day 11.

Test case 7is the most realistic test where the observed flow fields at 500 hPa surface
must be used as initial conditions. Any flow fields will be useful for this test provided that
they are real observed data initialized by a proper method. Three cases are recommended
to use by [26] for tests, 0000 GMT 21 December 1978, 0000 GMT 16 January 1979,
and 0000 GMT 9 January 1979. These are characterized by either a strong flow over the

FIG. 12. Height field at (a) day 0, (b) day 7, and (c) day 14 for test case 6 with M84. (d) shows the height
difference from T213 at day 14. Contour intervals for (a)–(c) are 100 m and solid (dashed) lines are forh ≥ 9500 m
(h < 9500 m). Contour interval for (d) is 10 m with positive (negative) values in solid (dashed) lines. Numerals
over each map are the minimum and maximum values, respectively.
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FIG. 13. Time variation ofl2(h) for test case 6.

north pole or cutoff lows which develop into a typical blocking situation or a strong zonal
flow.

In this study however, owing to the unavailability of the above data, we decided to use
other recent data available from the Korean Meteorological Agency (KMA): Two cases
of 1200 GMT 7 January 1999 and 1200 GMT 30 January 1999. One is characterized by
a strong flow over the north pole which develops into a dipole structure over the eastern
coast of the Eurasian continent, and the other is characterized by a large wave amplitude
of zonal wavenumber 4 or 5. These are objectively analyzed data with a resolution of
1.875◦ × 1.875◦. Since the initialization itself does not constitute the central issue of the
test and needs additional work, the initialization process for the data is omitted. The initial
height fields of the two cases are shown in Fig. 14 with a north polar stereographic projection.

FIG. 14. Initial height fields of (a) 1200 GMT 7 January 1999 and (b) 1200 GMT 30 January 1999 used for
test case 7. Contour intervals are 50 m and solid (dashed) lines are forh ≥ 9500 m (h < 9500 m). Shaded region
is for h≥ 10,200 m. Only the Northern Hemisphere is shown and the meridian and latitudinal circle are drawn
every 30 degrees.
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FIG. 15. Time variation ofl2(h) for test case 7.

Figure 15 illustrates the time variation ofl2(h) during the 5-day integration. The errors
increase almost linearly with time for all cases. For two initial data the errors remain nearly in
the same level and M84 gives better results than M42. Since for M42 the spatial resolution is
lower than the given data and correspondingly the small-scale components of the observed
data are removed from the initial condition, the error is as large as 1.0× 10−4 even in
the initial time. Figure 16 shows the height fields for different resolutions, along with the
spatial distribution of height differences from the result with T213 at day 5 for the case of
7 January 1999. For both M42 and M84 the differences in high latitudes dominate over
those in the low and middle latitudes. In particular, large-amplitude of errors are found over
the polar region with M42.

In Fig. 17 we present a time series of height sampled hourly at selected grid points
nearest to (31◦N, 53◦E) and (31◦N, 90◦E). Within the first day or so, one could observe
short time-scale fluctuations with periods of about 6 hours and amplitudes of approximately
10–20 m. It is noteworthy that the amplitudes of them for M84 are larger than those for
M42 and the fluctuations for both resolutions are almost in phase. In spite of the fact that
the same initial data are used for M42 and M84, the selected height values are not identical
to each other. This is because the sampling locations are different and the wave components
retained in the models are not the same (see [26]).

4.3. Test on the Long-Term Integration

One important issue with regard to a numerical method is the feasibility of an accurate
long-term integration without any numerical instability. The standard test suite consists of
error estimates for rather short-term integrations. It will be also meaningful to show explicit
evidence on the feasibility of a long-term integration far beyond the integration periods
used in the standard test suite. We performed a 450-day integration for test case 5 with
M42 and compared the result to the SHM of T42. In this case we take the time-step size
1t = 1200 s for both models. Figure 18 shows the time variation of the normalized total-
energy errors. During the first month the error increases rather slowly. After this the error
grows almost linearly with a large rate until about day 180, which is followed by a slower
rate of increase. The errors for both models are comparable to each other although M42
gives a more accurate result than T42, as is expected from the result of the standard test.



SHALLOW-WATER MODEL ON A SPHERE 281

FIG. 16. Height fields at day 5 calculated by (a) M42 and (b) M84 with the initial field of 1200 GMT 7 January
1999 for test case 7. Height differences from T213 at day 5 are shown in (c) and (d) for M42 and M84, respectively.
For (a) and (b) the contour intervals are 50 m and solid (dashed) lines are forh ≥ 9500 m (h < 9500 m). Shaded
region is forh≥ 10,200 m. Contour intervals for (c) and (d) are 25 m with positive (negative) values in solid
(dashed) lines.

FIG. 17. Time series of height at selected grid points for test case 7.
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FIG. 18. Time variation of the normalized total-energy error for test case 5. Both results with M42 and T42
are compared for 450-day integrations.

In Fig. 19 the height fields are shown at selected days along with the topography. The
height fields that are excited by the topographic forcing are well established with smooth
variation over the sphere throughout the integration period. The time evolution of the height
field suggests that the distinct three stages appearing in the error growth curve of Fig. 18

FIG. 19. Height fields at selected days (numerals on the top left) of long-term integration for test case 5.
Topography is represented with thick solid lines with 200 m intervals in the first map. Contour intervals are
50 m and solid (dashed) lines are forh ≥ 5500 m (h < 5500 m). Numerals over each map are the minimum and
maximum values, respectively.
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have direct relevance to the strength of the wave amplitude. For instance, when the height
field (or flow field) is near the zonal state, the error growth rate remains small.

5. DISCUSSION AND CONCLUSIONS

In this study, the spectral transform method in [3] where the double Fourier series is
adopted as basis functions was extended to the shallow-water model. The errors associated
with the method are evaluated using the standard test suite proposed by [26]. We have found
that as a whole the method gives comparable accuracy to the SHM for all cases considered
[10, 24]. Test results are summarized in Table III along with the results of the SHM. For
some cases the present method produces better results than the SHM (test cases 2, 5, 6
and 7) while it does not for other cases (test cases 1, 3, and 4). It is encouraging to note that
the accuracy is improved by the present method for the test cases that have no analytical
solutions (test cases 5–7). Among them the result of test case 7 is of particular importance
because it consists of the observed flow.

A spectral filter consisting of high-order Laplacian operators (∇4 and∇6) was designed
and successfully used to prevent nonlinear instability. The application of the filter to a
field variable in the spectral space needs (76N2+ 36N) operations. The memory space
for 6N2 elements should be prepared for this filter. Other low-order filters such as har-
monic or biharmonic-type may be used, for which less operations are necessary than that
employed in this study. It should be remembered, however, that low-order filters are less
effective in filtering out high wavenumber components beyond the triangular truncation. It
is recommended that low-order filters be used when rather a strong damping is necessary
in the model.

The relative efficiency of the present method can be estimated by comparing the operation
count required for one time step. With 2J × J transform grids (J = 2r , wherer is a positive
integer), the total operation count for the SHM with the flux form is [4, 24]

CSHM = 5.9J3+ 46.8J2 log2 J + 92.8J2,

where we did not take into consideration some minor terms. The present method needs
9 spectral transforms and 17 inversions at each time step. The inversions include spectral
filtering for three predicted variables, semi-implicit time stepping, and procedures to get
the streamfunction and velocity potential. The operation counts for the three major parts

TABLE III

Normalized L2 Error for the Standard Test Cases with Comparison to Spherical Harmonics

Models of T42 and T84

Model Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7

M42 .0220 1.1E-14 3.2E-08 .00146 1.5E-4 .0042 .0028
M84 .0082 6.2E-14 1.5E-09 .00064 3.0E-5 .0016 .0017
T42 .0110 2.0E-13 4.0E-10 .00082 9.6E-4 .0044 .0035
T85 .0050 3.0E-13 2.0E-13 .00040 7.7E-4 .0011 .0019
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TABLE IV

The Ratio of the Operation Counts

J CSHM/CDFM

32 0.68
64 0.90

128 1.28
256 1.99
512 3.29

1024 5.73
2048 10.32

can be written as follows:

λ-FFT: 46.8J2 log2 J + 92.8J2,

φ-FFT: 31.5J2 log2 J + 144J2,

Inversion: 132J2+ 102J.

Then, the total operation count for the present method is

CDFM = 78.3J2 log2 J + 368.8J2,

where we again omitted the minor terms. The computational efficiency as measured by the
ratio of operation countsCSHM/CDFM is presented in Table IV. One finds that the advantage
in computational efficiency appears fromJ = 128 and increases with the resolution of the
model. Although the speedup of the efficiency is rather slow untilJ = 256, the relative
efficiency is of significant level for the higher resolutions than this. It is certain that the
advantage of the DFM will increase if we introduce a more efficient FFT algorithm than is
currently used. Recently such a FFT algorithm, the so-called FFTW, can be found in Frigo
and Johnson [5] and Frigo [6]. This algorithm is typically faster than all other publicly avail-
able FFT algorithms. Therefore, the method using double Fourier series could contribute
to the enhancement of computational efficiency, particularly for high-resolution models.
In addition to the computational efficiency, the present method requires a small storage of
O(N2) elements, instead ofO(N3) memory space as for the SHM.

In the present method the global mean is expressed as a sum of all spectral components
with m= 0 while it is represented by only one spectral component for the SHM. For this
reason, the global mean of a field variable, e.g., the vorticity or the divergence, does not
necessarily vanish during the time integration in the present method, even though it should.
Therefore we must change the value of the spectral component(n,m) = (0, 0) to satisfy
the condition of vanishing global mean. The modification of the(0, 0) component does not
affect the meridional differentiation of that variable, so no serious problem occurs in the
course of time marching. Though being much larger compared to the SHM, the error in
the normalized global-mean mass typically remains on the order of 10−7–10−8 even for the
fully nonlinear test cases simulated with moderate resolutions.

Finally we address an additional advantageous feature of the DFM not found in the meth-
ods of [19, 21, 24] where the longitude–latitude coordinate system is not used. One often
wants to perform a numerical experiment where theL-fold symmetry (or cyclic boundary
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condition) in the zonal direction is exactly maintained withL ≥ 1. This is accomplished
with ease in the new method, just by replacingeimλ by ei Lmλ in Eq. (2.5a). But only odd
integers ofL are needed to keep the basis functions adequate for the pole conditions. It will
be desirable in this problem to take the number of meridional wave components as suffi-
cient to satisfyN ≥ L M , if we consider the characteristics of eigensolutions of Laplacian
operator stated in Section 2.

The test results presented in this study suggest that the double Fourier-series method
could be extended to three-dimensional numerical models used for weather prediction.

APPENDIX

Inversion of the Elliptic Equation with Legendre Polynomials

Consider the inversion of an elliptic equation such that

(1− ε∇2)δs = Hs, (A.1)

where the subscript s denotes the even mode (symmetric with respect to the equator) of
the zonal wavenumberm= 0. For this purpose we prepare a upper-diagonal matrixC of
(N/2+ 1)× (N/2+ 1) which satisfies

P2n(cosθ ′) =
n∑

r=0

Crn cos 2r θ ′, n = 0, 1, . . . , N/2, (A.2)

using the formula of Legendre polynomials (e.g., p. 80 of Moriguchiet al. [15])

P2n(cosθ ′) = 2
n−1∑
r=0

(2r − 1)!!(4n− 2r − 1)!!

(2r )!!(4n− 2r )!!
cos 2(n− r )θ ′ +

{
(2n− 1)!!

(2n)!!

}2

, (A.3)

whereθ ′ (≡ π − φ) is the colatitude and

(2n)!! = 2n(2n− 2) · · ·4 · 2 (A.4a)

(2n− 1)!! = (2n− 1)(2n− 3) · · ·3 · 1. (A.4b)

The coefficientsq2n
′s (the coefficients of the Legendre polynomial expansion forHs) can

be calculated from theH2n,0
′s by combining Eq. (A.2) with the linear algebraic equations:

Hs =
N/2∑
n=0

H2n,0 cos 2nφ =
N/2∑
n=0

q2n P2n(cosθ ′). (A.5)

If we let d2n be the coefficients of the Legendre polynomial expansion forδs we get

d2n = q2n/{1+ ε2n(2n+ 1)}. (A.6)

Then, theδ2n,0
′s are obtained from the relations in Eqs. (A.2) and (A.5). Note that when the

global mean ofH vanishes (i.e.,q0 = 0), we haved0 = 0.
The operational count for this procedure is onlyN2/2, which is about 5% of the whole

process associated with the inversion of all zonal wavenumber components.
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