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The spectral transform method using a double Fourier series as orthogonal basis
functions as in Cheong (2000,Comput. Physl57, 327) is extended to the solution
ofthe shallow-water equations on a sphere. A spectral filter which mimics the implicit
diffusion process with the third-order Laplacian operator is applied to the spectral
components of predicted variables to prevent the aliasing error or nonlinear instability.
For a predicted variable the spectral filter needs only abohE terations withN
being the zonal and meridional wavenumber truncation. The use of the filter even
at every time step does not deteriorate the computational efficiency of the double-
Fourier-series model, which comes from the availability of FFTs. The filter requires
an additional memory for only§? elements, so the total memory spaceOfiN?)
is sufficient in the present model. Along with the incorporation of the polar filter,
the semi-implicit time-stepping procedure contributes to a significant increase in the
time-step size.

A standard test set proposed by Williamsadal.(1992,J. Comput. Phy4.02 211)
is used to evaluate the errors associated with the new method for various resolutions. It
is shown that as a whole the accuracy of the method is comparable to that of spherical
harmonics model (SHM) though the present method provides more accurate time
integration for some cases but does not for other cases. A long time-integration far
beyond the period specified in the standard test set also illustrates almost the same
accuracy as that given by the SHM. The relative efficiency of the method to the SHM
appears from the resolution of 256128 transform grids, and it becomes significant
for resolutions higher than 522256. The computational efficiency is expected to
increase further with an improved FFT algorithm. The test results suggest that the new
method could be extended to three-dimensional numerical models used for weather
prediction. (© 2000 Academic Press

Key Wordsdouble Fourier series; shallow-water equations; spectral method; spec-
tral filter; weather prediction.
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1. INTRODUCTION

Cheong [3] showed that the spectral transform method using a double Fourier series (
ranged sine or cosine series in the meridional direction) as orthogonal basis functions
be successfully applied to the time integration of the vorticity and advection equations
a spherical domain with accuracy and efficiency. The double-Fourier-series model (DF
has several advantages over the spherical harmonics model (SHM), which is the 1
commonly accepted atmospheric general circulation model [7], including computatio
efficiency, a uniform grid interval, and a memory requirement of d@fN?) elements.
The operation count for the method is in gene@{N?log N) while it is O(N?) for the
SHM. The basis functions defined on transform grids, consisting(®?) elements, are
no longer necessary in the method. In addition, both the orthogonality and orthonormg
among the basis functions are better than those for the spherical harmonic functions
in the spherical harmonics model [9], computational time can be saved to a large ex
through the reduction of zonal transform grids in polar regions. One of the most import
features of the DFM in Cheong [3], which does not exist in other double-Fourier-ser
models (e.g., [1, 20]), is the invertibility of the elliptic equation Wit N?) operations.

The double-Fourier-series model used in Cheong [3] has a minor point as well that
spherical harmonics filter (SHF) should be employed to eliminate nonlinear instability. T
operation count for the filter is jupt3. Therefore the use of it at every time step deteriorate
the efficiency of the DFM. Moreover, the eigensolutions of the Laplacian operator must
calculated for each zonal wavenumber and stored to be used as a spectral filter (the st
for N3 elements is necessary). Of course, different sets of eigensolutions are needed
the resolution of the numerical model is altered. Although in the test calculations using
advection and vorticity equations Cheong [3] showed that the intermittent use of a SH
sufficient for the prevention of nonlinear instability, whether it also works for more gene
cases is not made clear. Even though such a method works for these cases, it will be des
to construct a simpler spectral filter that can provide the needed accuracy and stabili
the model.

A double Fourier-series expansion over the sphere can also be found in the work
Boer and Steinberg [1] and Spadz al. [20], where the meridional Fourier expansion is
carried out along the great circle passing over the poles in order to keep {perddicity.
For the method of Boer and Steinberg [1] a constraint on the spectral coefficients is |
essary so as to satisfy the pole condition that the amplitude of the zonal wave compo
must vanish at the poles. A long time integration of nonlinear equations with this mett
cannot be accomplished because the spectral coefficients do not satisfy trivially the
essary condition. However, the pseudospectral method of $patz[20] does not need
any constraint like this because the Fourier transform on meridians is taken only w
the differentiation on grid points is carried out. Nevertheless, the nonlinear instability
unavoidable in this method without using a well-designed filter. Spo#. demonstrated
that a spherical harmonics projection operator (SHPO; also commonly referred to a
spherical harmonics filter” [23]) can be a cure for such a numerical instability. An efficie
SHPO which interpolates the grids onto the Gaussian latitudes was introduced by [11
flexible SHPO with a reduce®(N?) operation applicable to an arbitrary distribution of
latitudinal points has been recently developed [23]. In principle, time savings through
reduction of zonal transform grids in polar regions cannot be achieved in the pseudospe
method, in contrast to the method of Cheong [3].
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In an attempt to overcome the severe degradation of performance at high resolution
SHM, recently several new methods [19, 21, 24] which employ coordinate systems o
than longitude—latitude have also been developed. The coordinate systems used the
capable of providing a uniform grid resolution over the sphere. They were found to prod
an accurate and stable time integration for time-dependent nonlinear differential equat
with substantial time savings for high resolutions. One of the most notable features of tl
new methods is the feasibility of local mesh refinement, although the assessment of acci
and performance in such a case has not been reported yet. For these methods, the inv
of elliptic equations is not possible or needs a rather complicated numerical procedure
as an iteration method.

In this study, we extend the method of Cheong [3] to the shallow-water equations with
standard test suite proposed by Williamsrl. [26], which were used by various authors
[10, 19, 20, 24] to assess the accuracy or stability of numerical methods. Computati
efficiency is of great concern for DFM along with accuracy and simplicity. With this |
mind, we introduce a spectral filter consisting of high-order diffusion operators rather tl
use the SHF of Cheong [3], because we want to implement a filter that need® axfR)
operations and storage of the same order. While the SHF in [3] provides a sharp cutoff o
spherical harmonics whose total wavenumber is higher than the prescribed wavenur
the diffusion-operator filter (hereafter called simply the “spectral filter”) produces a smo
response with the horizontal scale, as the term diffusion would indicate.

The remainder of the paper consists of four sections: Section 2 describes the proce
to get the spectral forms of the shallow-water equations on a sphere written in a vortic
divergence scheme. Section 3 is devoted to the design of a spectral filter for the prevel
of nonlinear instability. Test results of the method based on the standard test sulite
presented in Section 4. The results of the extended time integration are also show
a particular test case at the end of Section 4. A discussion and conclusions are giv
Section 5.

2. SHALLOW-WATER EQUATIONS AND SPECTRAL REPRESENTATION

2.1. Shallow-Water Equations

The shallow-water equations using a vorticity—divergence scheme in flux form [22, .
scaled by the radius and inverse rotation rat® ! of the earth are written as

Z_f = % [%u(c + 1) +sin¢%V(§ + f)} , (2.1a)
% _ % [%v(; + 1 —sin¢>%U(¢ + fﬁ
v [qu Dot %} , (2.1b)

where is longitude andp = latitude+ 7 /2, U = using andV = v sing with u and
v being the longitudinal and latitudinal component of the velocities, respectively, &
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f (= —2cosp) is the Coriolis parameterps is the surface geopotentia:=ghs; g and
hs are the gravitational acceleration and topography, respectivelyg;defined agh’ with

h’ being the deviation of the fluid depth*) from the time-invariant global-mean height
(h) ®' = gh* — ® with & = gh The vorticity¢ and divergencé are defined in terms of
velocity components as

1 Vv
— - - 2.2a
£ Siré ¢ { o ¢ d¢g } (2.23)
1 ou oV
= — sing— ;. 2.2b
Sirf ¢ { g, TSne a¢>} (2.2b)
Dividing the velocity into rotational and divergent components such that
oy Bx
U=- — 4+ = 2.3
sing a¢ + (2.3a)
V = +S|n¢—¢ + % (2.3b)

we can express the vorticity and divergence in terms of the streamfunction and velo
potential:

. =V, (2.4a)

§ = V?y, (2.4b)
2

v2 = ﬁ {8‘12 +S|n¢ s sing E;} (2.4¢)

Shallow-water equations in flux forms are simpler and require less computations t
those in advective forms. Although for a particular case such as the stationary Ros:
Haurwitz wave the flux forms provide a slightly decreased accuracy [3], we have found 1
the accuracy is rather insensitive to the detailed formulations of the governing equation:
the standard test suite (see also [22]).

2.2. Spectral Representation with a Double Fourier Series

As in Cheong [3], a true scalar function is represented with the truncated double Fou
series. For example, the vorticity is expanded as

M
(g, )= > (e, HE™ (2.52)
m=—M
> o &n.m(t) COSNG for m =0, (2.5b)
tm(@, ) = § oM £ m(t) sinng for oddm, (2.50)
SN cam(t) sing sinng  for evenm(s 0), (2.5d)

wherei = +/—1, m(n) is the zonal (meridional) wavenumber, aMiN) is the largest
wavenumber for the zonal (meridional) direction. The spectral compapghis obtained
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by the half-ranged Fourier transform of eitlgf(¢, t) for m = 0 and oddm or ¢y (¢, t)/
sing for evenm(s 0), for which only O(N?log N) operations are necessary.

The spectral coefficients for the streamfunction and velocity potential are obtai
from those of the vorticity and divergence by solving Poisson’s equation as illustra
in[3],

A¢ = D, (2.6)

where A and D are tridiagonal matrices dfl /2 x N/2 or (N/2+ 1) x (N/2+ 1), and

¢ andq are vectors ofN/2 or (N/2 + 1) elements consisting of the spectral componen
of the vorticity and streamfunction, respectively. If the vorticity (streamfunction) is give
the streamfunction (vorticity) is obtained by solvigig= D*A¢ (¢ = A~1D%) with an
efficient Gaussian elimination procedure which requi®g® M) operations.

The spectral coefficients of the velocity components are calculated from the diagr
tic relations in Eq. (2.3) with the meridional truncations one level above those of
streamfunction and velocity potential, respectively. The spectral form for evés 0)
differs from those for odeh andm = 0 because of the parity function attached to the sin
series:

U _ iMxnm+ N{¥ntim — ¥n-1m}/2, evenm(# 0); (2.79)
" imynm + {0+ Dnsam — (0 — Dy 1m}/2. oddm,m=0; (2.7b)

_imynm + N{n-1m — xns1m}/2, evenm(#£ 0);  (2.70)
ST limynm + {0 = Dn_tm — M+ Dxnsim/2. 0ddmm=0. (2.7d)

The nonlinear terms are evaluated by the transform method [16]. Detailed procedure
this including the location of transform grids can be found in [3]. The spectral forms of t
vorticity and divergence equation are written as

g{ _mimXam {0 =2 Ynim — (N+2)Yn_1m}/2, evenm(£ 0);  (2.83)
dt”™™ 7 ] =imXam + {0 = DYnizm — M+ DYa_1m}/2, oddm,m=0; (2.8b)
d
dtCl,o 0,0 (2.80
imYom — [V2®Tnm — Enm+ {(N — 2) Xni1m
d. ] —0+2Xoaml/2 evenm(£ 0);  (2.99)
dt "™ " ) imYom — [V20Tnm — Enm + {0 — DXnpam
—(n+ 1) Xn—1m}/2, oddm,m=0; (2.9b)
d I
acsl,o = —[V2®']10 — E10 — 2X00; (2.90

where X, m andY,, m are the spectral coefficients of the nonlinear tebihigs + f)/sir ¢

and V(¢ + f)/sir? ¢, respectively, and, n and E,, are those of the divergence and
V2{®s + (U2 4 V2)/2sirf ¢}. For the nonlinear terms, we have to get the velocities ar
the vorticity on the grid points by the inverse Fourier transform. The spectral form of 1
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TABLE |
The Resolution and Time-Step Size

Model N(=M) K xJ At (s)
M20 20 64x 32 1440
M42 42 128x 64 720
M84 64 256x 128 360

geopotential equation is given by

_imAn,m - q;an.m + {(n - 2) Bn-&-l.m

d , ] —(+2Br1m)/2 evenm( 0);  (2.103
dt ™™ 7 ) —imAum — ®6nm + {(N — 1)Brirm
—(N+1)Br-1m}/2, oddm,m=0; (2.10b
d _
dat 1o=—®810— 2By, (2.100

where @, ., denotes the spectral transform ®f(x, ¢) and A, m and By, are the spec-
tral coefficients ofU &'/sir? ¢ andV ®'/sir? ¢, respectively. ThéN + 1, 0) component
of the spectral coefficients corresponding to the meridional advection terms should be
carded [3].

The number of transform grids in longitudk ) and latitude(J) is set byK > 3M + 1
andJ > (3N + 1)/2, respectively. These are appropriate conditions for the triangular tre
cation for spherical harmonics models. Table | presents the number of grids, the w
truncation, and the size of the time step used in this study. It should be emphasized the
aliasing error is inherent in the present model because the spectral expansion in Eq.
actually includes the wave components corresponding to the rhomboidal truncation.
numerical method to prevent the aliasing error or nonlinear instability will be presen
in Section 3. As in previous studies [1, 3, 12, 20], the Fourier filter is used to filter c
the higher zonal-wavenumber components from the Fourier transform of a field varie
(e.g.,Zm(e, 1)) in the vicinity of the poles. We adopt the type used by [3], in which th
coefficients of the zonal Fourier transform such;agp, t) are made zero provided that
m > (M — 3)sing + 4.

All the variables are set in double precision throughout the numerical experiments,
which floating points of 15 digits are available. To perform one time-step marching
spectral transforms, either forward or inverse, are necessary. The spectral equatiol
(2.8)—(2.10) are time integrated with a leap frog scheme, using a constant time -increr
At except for three initial time steps. To reduce the possibility of an initial shock, we be
with a forward scheme using a smaller time incremeht4, which is followed by two time
steps of leap frog schemes wit{t /4 andAt /2, respectively [14]. For some test cases we
use a time filter [18] with a coefficient of 0.02 to suppress the computational mode.

2.3. Semi-Implicit Time Integration and the Elliptic Equation

To suppress the undesirable gravity oscillations and consequently to take a large
step, we introduce the semi-implicit method for time integration: The geopotential in
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divergence equation and the linear divergence term in the geopotential equation are
with implicity. The spectral representation for the semi-implicit method is illustrated wi
the formulas

§PTD — s(-D _ oAtv2p/(PHD 4 Ggp), (2.11a)

P — @' P-D _ oAt psPHD + Gfbp)’ (2.11b)

where the superscripp] denotes the present time step whife— 1) and(p + 1) denote
the previous and the future one, respectively, and wisPeand G are the remaining
terms. These can be rearranged into a Helmholtz-type elliptic equation for the diverge
which is solved easily through the inversion of the tridiagonal matrix [3]

(1—eV2)sPtD = H, (2.12)

wheres = ®(2At)2 andH is the forcing function to be determined from Egs. (2.11).
Since the divergence is expressed as a Laplacian of the velocity potential a
Eq. (2.4b), its global mean should vanish. Therefore the global meah sifiould also
vanish. In the course of the time-marching procedure, however, this cannot always be
isfied trivially, because of machine rounding errors. Therefore, we have to subtract
global mean fronH (see Eg. (3.10) in [3] for the global averaging) prior to inversion of th
elliptic equation. With this modified forcing functioﬂéf’oﬂ) may have an arbitrary value
as a solution, but it should be changed to meet the condition that the global mean is :

ie.,

N/2

w=— Z (850" /(1 —@n?)], w— s,
n=1

For the same reason, the global mean of the vorticity must be eliminated from the predi
value.

If we are to invert a Helmholtz-type elliptic equation in which the forcing functiol
does not necessarily vanish (this is the case of spectral filtering in Section 3), the al
procedure to get a solution is subject to a minor change. We first remove the global avel
sayI-T, from the forcing function prior to inversion. After inversion, the spectral componer
(n, m) = (0, 0) of the inverted variable should be rearranged in such a way that its glo
mean becomels . The necessity of the manipulations with respect to @) component
arises from the matrix structure that all the elements of the first colurbnda in Eq. (2.6)
vanish for even modes aof = 0. An alternative method for the inversion of this case ca
be found because the spectral components are represented exactly as the sum of Le
polynomials form = 0 (see also Section 3). The detailed procedure for the alternat
method is shown in the Appendix. The increase in the computational burden due to
method is almost negligible. Both methods will give results similar to each other in princig
It has been found, however, that the method in the Appendix gives more accurate re
than that stated above. So we adopt the method described in Appendix for the inversic
the even mode ah = 0.
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3. SPECTRAL FILTERING

3.1. Eigenvalues and Eigenvectors of the Laplacian Operator

With the spectral representations in Section 2, the Laplacian operator can be written
standard eigensystem (e.qg., [3]). Similar eigensystems and their eigensolutions, discre
with double Fourier series which are different from those adopted in this study, are discu:
in Orszag [17] and Boyd [2]. In principle, for fixewh (>3) there arem — 1 eigenmodes
for oddm andm — 2 for evenm from the last (i.e., smallest meridional scale) that are nc
identical to the (surface) spherical harmonics (i.e., exact eigensolutions of the Lapla
operator). This is easily understood if it is remembered that spherical harmonics ma
represented as a cosine series withrtith power of the sine of the colatitude [13]. All
modes fom (<2) are identical to those of spherical harmonics. In other words, only sph
ical harmonics within the triangular truncation are calculated correctly with the doub
Fourier-series expansion. In the sense that the structures of spherical harmonics corre:
to those of the Rossby—Haurwitz waves, which are the normal modes of the linear
vorticity equation in a quiescent environment [8], the wrong eigensolutions in the doulk
Fourier-series expansion may be called unphysical modes [25].

To see the difference of the calculated eigenval@s of the Laplacian operator from
the theoretical oné—I(l + 1)) in detail, the ratioR defined as logfC,/I( + 1)] is
presented in Fig. 1 foM = N = 64. Herel is the total wavenumber-like index of the
spherical harmonic functions; i.d.,equals the zonal wavenumbetus the number of
nodal point between poles. The wave components lying on the line parallel to the diagc
running from left-up to right-down have the saindt is noteworthy that the number of
incorrect eigensolutions are smaller than was expected above (see also [2]) for the z
wavenumbers larger thane(=30 in this case), and the contoursRfexhibit steplike vari-
ation. The reasons for these differences are not yet clear. For the incorrect eigensolut
the deviation from the theoretical value becomes severe as the zonal wavenumber decr
for fixed| and increases withfor fixedm. As one could expect, the unphysical mode give

an=2.0468

gl el by g
T —

[op]
e

=
@

meridional mode
> &
NENRENEINRENENEARNERURARRRERAE)

0 LINLINL N A A

O

zonal wavenumber

FIG. 1. Distribution of R defined as logfC,/I(I + 1)], whereC, and —I(l + 1) are the calculated and
theoretical eigenvalues of the spherical Laplacian operatoMfee N = 64, respectively. The definition d¢f
is found in the text. Contour interval is 0.2 and the solid and dashed lines repfRsent.0 andR < 1.0,
respectively. The solid thick line is fdR = 1.0 and the region marked with dots denofs= 0. For the zonal
wavenumbem < 2, R = 0 (not shown in this figure).
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very poor orthogonality. (The orthogonality between two modes can be calculated v
spectral coefficients following the formula for global integration of the quadratic term [3

The wrong eigensolutions will give rise to a numerical error when one evaluates
terms including the Laplacian operator or the nonlinear terms [3]. At the same time
causes a severe restriction on the time-step size in the time-stepping procedure that inc
the Laplacian operator [17]. The number of transform grids in this study was determi
according to the 23 rule to prevent the aliasing error, which is an appropriate setting f
the triangular truncation in a model of spherical harmonics base. Therefore the exist
of the eigensolutions corresponding to wavenumbers beyond the triangular truncation
generate an aliasing error. For these reasons, it will be desirable to filter out the unphy
modes as well as the higher modes beyond the triangular truncation.

It is found that the SHF used in [3] should be applied at every time step to prev
the nonlinear instability for the shallow-water test cases proposed by [26]. This obviol
deteriorates the efficiency of the DFM, in which the typical operation coudt 2 log N).
This motivates us to find a more efficient filter than the SHF in [3].

3.2. Spectral Filtering as a Diffusion Process

In this study, we tried to design an efficient and simple spectral filter that is suitable
only for prevention of the nonlinear instability but also for accurate numerical integratic
The simplest way to do this may be to consider a strongly scale-dependent diffusion pro
such that

9Q _ —c1V4Q + ¢, VoQ, (3.1)

ot

where Q is the variable to be filteredy andc, are positive constants, and all variables
are nondimensional. To avoid severe restrictionscpand ¢, (or the time-step size for
this filtering process), the implicit time integration should be chosen. For the spher
harmonics model, implicit time integration with higher order Laplacian operators is trivi
However, it is not the case in this study. It must be accomplished by a successive invel
of Helmholtz equations. For convenience in the numerical procedure, we rewrite Eqg. (
with positivecs as

a
a_? = —CsV?Q + CV?Q — . V*Q + ¢, V°Q. (3-2)

This equation can be discretized in time with an implicit method except for one of 1
harmonic diffusion terms by assuming that one time steftighis gives

Q(p+1) _ Q(p) _ (%VZQ(p) + C§V2Q(p+1) _ C’{V4Q(p+1) 4 C;VGQ('”'D, (3.3)

wherect = ¢ At (i = 1,2, 3). ThenQP*Y (hereafter denoted &3F), the filtered variable
of QP (=Q), is obtained by solving successively the Helmholtz—type elliptic equations

(1-caV?)[L—csVH{(1-cVHQ' = (1 +c5VHQ, (3.9

wherecy, cs, andcg are determined fromaj, c;, andcj. The numerical algorithm for the
solutionQ" with spectral representation is shown in detail in [3]. To make Eq. (3.4) intc
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simpler form, we first fixc; and givec; = 3 andc} = 3y with y = ,/c;/3:
1-yv»)*Q" = 1-3yVv3HQ. (3.5)

Now y is the only parameter in this spectral filter and usugli 1. Thus the coefficient
for the second term is much smaller than that for the first in Eq. (3.1). In other wor
spectral filtering of this type is basically equivalent to using the biharmonic filter, but higt
modes are more severely damped compared to the biharmonic filter. One can determir
filter viscosity based on physical reasoning, e.g., by specifying the damping rate of a cel
mode, as is usually done in the SHM.

In Fig. 2 the amplitude ratioR = (Q")f/QM for various y is presented, where
m(=3,4,...,64) and1* (=0, 1, 2,...,64) are the zonal wavenumber and meridiona
mode number of the eigensolutions. The amplitude ratio must lie between 0 and ul
As is expected, the overall response increases Réecomes smaller) gs increases,
and itincreases with boti andl*. With y = (5- 27)~%/3/(64- 65) the strongest response
for which the amplitude ratio of the filtered mode to the unfiltered is smallest react

n}ilrl}?lolquplll‘slsll|l|lllll|lllllll rnuilr??pq-nqcx)xoﬁllule||||||l||||l||
Bd - - R<0.1 [ Bd 3 £ R<0.1
8} - - - -
- E "g -
gueJ e =
~ E, S -
< C© - -
£32— 532 I
o C o 3 E
2 .2 3 =
=} o] 3 -
: - -: - C
O T I||Illlll - D = lll|||||||llllI|Illllll|lllll|I -
s} usg [T} 0 B4
zonal wavenumber zonal wavenumber

min=0. 001103 min=0.003110

BLJ syl ”'”””l'lfl{z()‘,l'l 8‘4 L x|||I|||||||I||‘|||l|||!|2|<|01it
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g 32
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FIG. 2. Distribution of R defined as the ratio of the filtered to unfiltered eigensolutions of the Laplacie
operator, for the zonal wavenumber> 3. Contour interval is 0.1 and the solid and dashed lines represe
R > 0.5 andR < 0.5, respectively. The solid thick line is fd® = 0.5 and the region marked with dots denotes
R > 0.95. The coefficients of the spectral filterfor (a), (b), (c), and (d) are.82 x 1075, 5.28 x 1075, 2.81 x
1075, and 164 x 10°°, respectively.
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TABLE Il
Coefficients of the Spectral Filter

14
Model Test cases 1, 5, and 6 Test case 7
M20 5312x 10°° 10.624x 105
M42 2112x 105 4.224x 1075
M84 0.830x 10°° 0.166x 10

nearly 104. When it isy = (500- 27)~Y/3/(64- 65), the strong response is more or less
concentrated at the larger andl*. One thing to be emphasized is that even though tt
total wavenumber is the same, the larger amplitude loss is observed for the smaller 2
wavenumber. This is the property of the spectral filter which is most different from thc
used in [3]. Although the steplike variation of the responses is also present in Fig. -
disappears for the modes within the triangular truncation even in the case that the 1
viscosityy is large (see Fig. 2a).

As will be seen later, ify is chosen appropriately the nonlinear instability does nc
appear in a time-marching problem. Too large a valug will result in excessive damping
of the low wavenumber while too smalljamay be not enough to prevent the nonlinea
instability. In Table Il, we present the coefficients of the spectral filter for various moc
resolutions, which are found to be appropriate in the test cases of the present study.
thaty decreases with the resolution. In a qualitative sense the spectral filter resemble
implicit viscosity (or diffusivity), but they are different from each other particularly in th
case where semi-implicit time stepping is incorporated.

Let us consider the computational efficiency of the filter. Application of the filter 1
the variableQ with spectral representation requires performing three inversions an
forward operation of the Laplacian operator. For the sake of the efficiency of the fil
prehandling of the matrices in Eq. (2.6) is necessary to prepare the modified matr
for each zonal wavenumber. The total memory spaceNsf @lements is sufficient for the
modified matrices. Application of the filter to a field variable in the spectral space needs
the operation count of (6?4 36N). Before time marching of the prognostic variables
we apply the filter to the initial field. After the first time step, it is applied to the predicte
variables at every time step, i.e., variables at time spep ().

4. TEST RESULTS

Williamson et al. [26] proposed a test suite for the numerical solutions of the shalloy
water equations, consisting of seven cases: Four test cases have analytic solutions
the remaining three cases do not. Various error measures used to assess the accura
new method are described in detail. For the cases which have no closed solutions, the ¢
should be measured as the differences of the solutions from those of high-resolution s
ical harmonics models such as the NCAR T213. In this study, we produced the refere
solutions from a T213 model which was independently coded by the author. Accurac
the Legendre functions used in this code can be found in Cheong [3].

Detailed mathematical formulas for the standard test cases can be found in [26]. Her
describe the test cases as briefly as possible. For some test cases, the earth’s rotation
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made to have an anglefrom the coordinate axis to investigate the so-called pole proble
which could be caused by using the spherical coordinate system. In addition to the star
test cases, an extra test result for test case 5 is presented in Section 4.3.

4.1. Standard Test Cases 1-4

Test case Is the advection of the cosine-bell height field with maximum value of 1000
by the nondivergent super-rotation flow (the divergence field is made zero for this test ce
The direction of the flow is varied from O tar/2: The center of the cosine bell is advectec
along a great circle which makes an anglevith the equator. Some solutions using the
double Fourier series are shown in [3] where a spherical harmonics filter was used. In
study, the results with the spectral filter described in Section 3 are presented. The adve
flow ug is given to be about 40 m/s which gives one evolution per 12 days. Figure
shows the error growths of(h) andl,(h) with time fora = 7/2 — 0.05 and M42. The
signal of passing the north pole that was not present in the experiment with the SHF [
evident around day 3 for both(h) andl,(h), with a stronger signal fdg (h). |1 (h) steadily
increases before day 3 but after passing the north pole it does not vary significantly with ti
The results forr = 0.05 andr /4 exhibit an error level similar to that for = /2 — 0.05,
but the signal of passing the north pole disappears fer0.05 and is weakened for =
7 /4. Figure 3b illustrates how tHg(h) error at day 12 varies with the model resolution.
One can find a very good convergence rate of the solutions.

As in [3] where the SHF was used, the spatial structure of the calculated cosine be
almost exactly overlapped with the theoretical cosine bell (not shown here). The sp:
structure of the error field is also very similar to that in [3]. As in other numerical metho
[10, 24], the most significant errors are found over the cosine bell and the spectral ringir
seen over the sphere. The conservation property of a numerical method is a very impo
factor. This is checked by taking the ratib]{/[h]o where h]; and |h]o are the global
integral of height field at timé and initial condition, respectively. The ratio was found tc
remain on the order of 13° during one evolution fow = /2 — 0.05.

Test case & the zonal geostrophic flow of super-rotation which is rotated poleward |
an anglex. The geostrophic flow on the equator is about 40 m/s. The spectral filter is nc

a b
.10 3 — -0 -
M2 ] -
08 = :
: = -1 o
063 R :
R :
.04 3 E 1 o u
FRCE I 3
02 E :
-OD i;lllllllll%llllllllllll-llllII|l|IIll6|IIIlIlIHIléllllllllll]llDHIHIHlI]l; _3 = I | I L
(day) M0 Mu2  MBu

FIG. 3. (a) Time variation of;(h) in dashed lines and(h) in solid lines for test case 1 with = 7 /2 — 0.05
and M42. (b) Sensitivity of,(h) error at day 12 to the model resolution to= 7 /2 — 0.05.
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FIG. 4. Time variation ofi;(h), I,(h), andl (h) for test case 2 witlk = 7/2 — 0.05 and M42.

used in this case. Figure 4 shows the time evolution of height dirdrs |, (h), andl ., (h)

for « = /2 — 0.05 and M42 on a logarithmic scale. Error levels remain on the order
1014 during the 5-day integration, exhibiting oscillation with time. Note that the lines f
I1(h) andl,(h) almost perfectly overlap. The amplitude of oscillation reaches nearly o
order forl1(h) andl,(h) while it remains in nearly half an order fbg, (h). Fora = 0.05,
however, the amplitude of oscillation is reduced to a significantly lower value as showt
Fig. 5a. These oscillations are due to sampling errors (see also [10, 24}) F06r05, 1 (h)
andl,(h) increase slowly with time, but,(h) does remain almost at the same error leve
during the 5-day integration.

Figure 5b shows the time evolution of th€h) error for M20 and M84 withy = /2 —
0.05. It is interesting to note that the accuracy decreases with the resolution, which is
found in other methods (e.g., Spat al. [20]): For the experiment with M20 the error
increases with time, but unlike M42 the amplitude of the oscillation is very small. For M&
the amplitude of oscillation is smaller than the M42 case, while the error is larger than
for M42 by nearly one order. The increase of errors with resolution is attributable to
fact that the flow field is so simple that it can be represented only with the first mode of
meridional basis functions, and the roundoff errors associated with the matrix inversiol
in Eq. (2.6) increase with the matrix size.
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FIG.5. (a) Time variation of;(h), I,(h), andl, (h) for test case 2 witlk = 0.05 and M42. (b) Time variation
of I,(h) for the model resolutions M20 (dashed line) and M84 (solid line) for the @aser/2 — 0.05.
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Test case 3s the zonal geostrophic flow with compact support. The initial flow an
height field contain more meridional modes than the flow used in test case 2 becaus
meridional extent of the flow field is very narrow. So if the model resolution is low, tt
initial field cannot be expressed accurately. Spectral filtering was not done for this ¢
The initial height field should be obtained from the velocity field given. Unlike as in [2¢
where the height field is obtained by an integration, here it is calculated through ma
inversion, which is much simpler than the integration method. For brevity, we illustre
the procedure involved in the simple case where the rotation anigleero. The balance
equation from which the height field is calculated is

/

0o
u?tand + VIR 2u =0, 4.1)

where6 is the latitude. With some manipulations, we can rewrite this equation as 1
second-order differential equation

/

0 . 0d
COSH% u?siné + cosh

2ucosd| =0. 4.2
o T (4.2)

Then®’ can be solved by a matrix inversion as described in [3], taking into considerat
that the second term includes the Laplacian operator with zonal wavenumber of zero an
remaining terms constitute the forcing function in a Poisson’s equation. In this proced
the meridional truncation fon? sind andu cosd must beN + 1, and®’ has meridional
modes up toN + 2. In a similar manner, the height field can be determined when t
geostrophic flow is not parallel to the latitudinal circles, ice# 0.

Figure 6a shows the time evolution of height erfath), 1,(h), andl ., (h) with @ = 7 /3
and M42. It can be seen thigt(h) is larger than botly (h) andl,(h) by a factor of about
one order. The errors increase sharply during the first eight hours, accompanied by a r
slow increase after that. Althoudfth) andl,(h) are oscillating with time, the amplitudes
of oscillation decrease with time. The sensitivity of the etggh) to the model resolution
is presented in Fig. 6b. Compared to the case of M42, the accuracy decreased by abou
orders for M20 while it increased by about one and half order for M84.

a b
-5 = -3: a
: [— logh (k) Mic E 3 a2
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FIG. 6. (a) Time variation ot (h), I,(h), andl. (h) for test case 3 witlx = 7/3 and M42. (b) Variation of
1,(h) with the model resolution at day 5 far= /3.
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Test case & the forced nonlinear system with a translating low which is forced to adve
zonally with eitherp = 20 m/s or 40 m/s. In the standard test set [26], the forcing functic
is given with the velocity field, while the prediction variables used in this study are t
vorticity and divergence. Since it is trivial to express the momentum forcing in terms of
vorticity and the divergence using the identities in Egs. (2.2), the detailed procedure tc
the forcing functions in the present scheme is not shown. When the forcing function is gi
in terms of the streamfunction (e.g., Egs. 128 and 130 in [26]), the vorticity is obtair
through a matrix inversion as in Eq. (2.6).

The forcing functions in this case are time dependent, and they also include the 1
derivatives. As stated in Section 2, the predicting scheme in this study is able to incorpc
the semi-implicit method in the time-stepping procedure. The forcing terms are also tre
semi-implicitly in order to keep the consistency in the numerical approach. For this purp
the time derivatives in the forcing are incorporated in the model with a finite differen
approximation rather than an analytic expression. A time filter is used in this test c:
while the spectral filter was not introduced. The initial height field is not shown becaus
is indistinguishable from those in [10].

The height difference from the analytic solution for M42 at day 5 is illustrated in Fig.
Though the largest error is found over the translating low (the center of each figure), a fe
large error is also distributed to the north and east of it. It is also noted that the error f
exhibits a wave-train-like structure for which the amplitude decreases with the dista
from the center. The amplitude of the error in thie= 40 m/s case is larger than that in the
Up = 20 m/s case by a factor of about 5. Figure 8a presents the time evolutionl gftthe
error forup = 20 m/s and 40 m/s respectively. It is noted that the lines do not have st
time-scale fluctuations during the integration period [10, 24]. This might be attributable
the semi-implicit time-stepping procedure. Figure 8b illustrates the error convergence
the resolution. The error decreased by more than one order when the resolution incre
from M20 to M42 while it decreased only by a factor of 2 when the resolution increas
from M42 to M84.

It should be reported that the time filter affects the accuracy to a certain extent. For ex
ple, when the time filter is removed in this test case the error level is significantly lower
With ug = 40 m/s,l»(h) errors at day 5 are.B5x 1072, 7.63x 1072, and 201 x 1012

FROM -0.30 TO 0.4S BY 0.04 FROM -0.99 T 2.u4 BY 0.20

FIG.7. Heighterror fields at day 5 for test case 4 withg)= 20 m/s and (by, = 40 m/s for the M42 case.
Positive (negative) values are in solid (dashed) lines.
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FIG. 8. (a) Time variation of,(h) for test case 4 with M42. (b) Variation &f(h) with the model resolution
at day 5 forug = 20 m/s.

for M20, M42, and M84, respectively. However, a long time integration without the tin
filter was found to be unstable.

4.2. Standard Test Cases 5-7

Test case Sleals with the zonal flow over an isolated mountain 2000 m high, located
(90°W, 3C°N), with@ = 0 and the equivalent deptl3 = 5960 m. The initial zonal flow is of
a super-rotation with the maximum wind speed being 20 m/s. Because the analytic solt
is not available in this case, we have calculated the error as the difference from the solt
provided by a high-resolution model, T213. A time filter is used for this and the remaini
cases. Figure 9a shows the time variations of the globally averaged, normalized total-r
error | (h) for M42 and M84. Note that the total mass increases with time for M84 whil
it decreases for M42. The accuracy for M84 increased by about half an order compare
M42. In Fig. 9b, the normalized total-energy ert@m E), one of the second-order invariants
without dissipation, is illustrated at the same resolutions as in Fig. 9a. The energy decre
monotonically with time and the energy-loss rate for M84 is about one-fifth of that for M4

a b

4 E 4 OE = 3

E : L T 1
CHFE Mz E 23
=] —Med R E
= o] = o E3- """ M2 3
R F ® 273 — M8d
w 4 Tl - w — 3 3
< 1 T 2 X-u4 3
< 23 T Fex T3 .
- 7 normalized - -5 normalized 3
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FIG. 9. (a) Time variation of the normalized total-mass ertgh) for test case 5. Scale on the left (right)
vertical axis is for M42 (M84). (b) Time variation of the normalized total-energy error.



SHALLOW-WATER MODEL ON A SPHERE 277

-90+=
180

1 ¥ 14 T i

-30 T
80 180 S0W 0 90E 180

FIG. 10. Height field at (a) day 5, (b) day 10, and (c) day 15 for test case 5 with M84. (d) shows the hei
difference from T213 at day 15. Contour intervals for (a)—(c) are 50 m and solid (dashed) linesare 5&00 m
(h < 5500 m). Contour interval for (d) is 0.4 m with positive (negative) values in solid (dashed) lines. Numer
over each map are the minimum and maximum values, respectively.

Figure 10 presents the spatial structure of the height field for M84 at 5, 10, and 15 d
along with the difference from the T213 model at day 15. A large difference is found
the remote area rather than over the topography, whose amplitude is less than 2 m. TF
the height field also exhibits a quite large wave amplitude in the southern hemisphere
error is fairly small there. One interesting feature in this figure is that the largest error ex
in the region where the spatial variation of the height field is rather small. Just southw
downstream of the topography, very small scale errors are distributed. We have found
they disappear with an enhanced spectral viscosity (not shown).

The normalized difference from the spherical harmonics model T2, is given in
Fig. 11. For M42 the error increases sharply in the first day, followed by a slow incre
after that. The error for M84 steadily grows but is jusB@x 10~* at day 15, which is

+3: =
= 3 E
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S — M8U 3
+23 E
>
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D:'|||I|||IIIIII|||||‘|||||l||||:

0 12 15

(day)

FIG. 11. Time variation ofl,(h) for test case 5.
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about one-fifth of that for M42. Not shown here is the normalized enstrophy error for M-
which shows a steady exponential decrease until day 12 except for the initial few d
where it remains positive with a maximum value 02Dx 105, After day 12 it shows a
rather slow linear decrease. The normalized enstrophy errors at day 18%we 00~ and
0.15 x 10~% for M42 and M84, respectively.

Test case & the stable Rossby—Haurwitz wave of the zonal wavenumber 4. In the abse
of the divergence effect, it translates zonally, preserving the shape. The time variation o
normalized total-energy errdX TE) during the first 14 days exhibits a nearly linear increas
for both M42 and M84 (not shown), as was not observed in test cases 1-5. Such a beh
has also been reported in the numerical experiments using the spherical harmonics n
(see Fig. 5-9b in [10]). Unlike as in [10], however, the short-scale fluctuation is nonexist
in the present model. As in most of the test cases shown above, the accuracy improves
the resolution of the model:(TE)’s at day 14 are 37 x 10~* and 182 x 10~* for M42
and M84, respectively.

Figure 12 presents the spatial structure of the height field for M84 at days 0, 7,
14, along with the difference from the spherical harmonics model T213. Large errors
distributed mainly in the middle and high latitudes. In general the negative anoma
have local peaks in the high latitudes while the positive anomalies show peaks arc
30 degrees in both hemispheres. The time variatidg(bj, the normalized difference from
the spherical harmonics model T213, is presented in Fig. 13. As a whole the error grc
rate for M42 is larger than that for M84, particularly after day 11.

Test case Ts the most realistic test where the observed flow fields at 500 hPa surf
must be used as initial conditions. Any flow fields will be useful for this test provided th
they are real observed data initialized by a proper method. Three cases are recomme
to use by [26] for tests, 0000 GMT 21 December 1978, 0000 GMT 16 January 19
and 0000 GMT 9 January 1979. These are characterized by either a strong flow ove

(a) 8000.27  10549.29 (b) 8239.77  10514.71

+90 1 1 1 1 1 il i I 1 1 +90 | 1 i L 1 1 1 1 1 1
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FIG. 12. Height field at (a) day 0, (b) day 7, and (c) day 14 for test case 6 with M84. (d) shows the hei
difference from T213 at day 14. Contour intervals for (a)—(c) are 100 m and solid (dashed) linesare3600 m

(h < 9500 m). Contour interval for (d) is 10 m with positive (negative) values in solid (dashed) lines. Numer
over each map are the minimum and maximum values, respectively.
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FIG. 13. Time variation ofl,(h) for test case 6.

north pole or cutoff lows which develop into a typical blocking situation or a strong zor
flow.

In this study however, owing to the unavailability of the above data, we decided to |
other recent data available from the Korean Meteorological Agency (KMA): Two cas
of 1200 GMT 7 January 1999 and 1200 GMT 30 January 1999. One is characterize
a strong flow over the north pole which develops into a dipole structure over the eas
coast of the Eurasian continent, and the other is characterized by a large wave ampl
of zonal wavenumber 4 or 5. These are objectively analyzed data with a resolutior
1.875 x 1.875. Since the initialization itself does not constitute the central issue of tl
test and needs additional work, the initialization process for the data is omitted. The in
height fields of the two cases are shown in Fig. 14 with a north polar stereographic projec

FIG. 14. Initial height fields of (a) 1200 GMT 7 January 1999 and (b) 1200 GMT 30 January 1999 used
test case 7. Contour intervals are 50 m and solid (dashed) lines dre-f@00 m f < 9500 m). Shaded region
is for h> 10,200 m. Only the Northern Hemisphere is shown and the meridian and latitudinal circle are dr:
every 30 degrees.
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FIG. 15. Time variation ofl,(h) for test case 7.

Figure 15 illustrates the time variation lefh) during the 5-day integration. The errors
increase almostlinearly with time for all cases. For two initial data the errors remain nearl
the same level and M84 gives better results than M42. Since for M42 the spatial resolutic
lower than the given data and correspondingly the small-scale components of the obse
data are removed from the initial condition, the error is as large.@s 10~* even in
the initial time. Figure 16 shows the height fields for different resolutions, along with t
spatial distribution of height differences from the result with T213 at day 5 for the case
7 January 1999. For both M42 and M84 the differences in high latitudes dominate c
those in the low and middle latitudes. In particular, large-amplitude of errors are found ¢
the polar region with M42.

In Fig. 17 we present a time series of height sampled hourly at selected grid po
nearest to (3N, 53°E) and (31N, 90°E). Within the first day or so, one could observe
short time-scale fluctuations with periods of about 6 hours and amplitudes of approxima
10-20 m. It is noteworthy that the amplitudes of them for M84 are larger than those
M42 and the fluctuations for both resolutions are almost in phase. In spite of the fact
the same initial data are used for M42 and M84, the selected height values are not ider
to each other. This is because the sampling locations are different and the wave compo
retained in the models are not the same (see [26]).

4.3. Test on the Long-Term Integration

One important issue with regard to a numerical method is the feasibility of an accul
long-term integration without any numerical instability. The standard test suite consist:
error estimates for rather short-term integrations. It will be also meaningful to show expl
evidence on the feasibility of a long-term integration far beyond the integration peric
used in the standard test suite. We performed a 450-day integration for test case 5
M42 and compared the result to the SHM of T42. In this case we take the time-step
At = 1200 s for both models. Figure 18 shows the time variation of the normalized to
energy errors. During the first month the error increases rather slowly. After this the el
grows almost linearly with a large rate until about day 180, which is followed by a slow
rate of increase. The errors for both models are comparable to each other although
gives a more accurate result than T42, as is expected from the result of the standard t
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FIG.16. Heightfields atday 5 calculated by (a) M42 and (b) M84 with the initial field of 12200 GMT 7 Janua
1999 for test case 7. Height differences from T213 at day 5 are shown in (c) and (d) for M42 and M84, respecti
For (a) and (b) the contour intervals are 50 m and solid (dashed) lines dre=f@500 m fi < 9500 m). Shaded
region is forh > 10,200 m. Contour intervals for (c) and (d) are 25 m with positive (negative) values in so
(dashed) lines.
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FIG. 17. Time series of height at selected grid points for test case 7.
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FIG. 18. Time variation of the normalized total-energy error for test case 5. Both results with M42 and T
are compared for 450-day integrations.

In Fig. 19 the height fields are shown at selected days along with the topography.
height fields that are excited by the topographic forcing are well established with smc
variation over the sphere throughout the integration period. The time evolution of the he
field suggests that the distinct three stages appearing in the error growth curve of Fic

FIG. 19. Height fields at selected days (numerals on the top left) of long-term integration for test case
Topography is represented with thick solid lines with 200 m intervals in the first map. Contour intervals
50 m and solid (dashed) lines are for- 5500 m fi < 5500 m). Numerals over each map are the minimum anc
maximum values, respectively.
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have direct relevance to the strength of the wave amplitude. For instance, when the h
field (or flow field) is near the zonal state, the error growth rate remains small.

5. DISCUSSION AND CONCLUSIONS

In this study, the spectral transform method in [3] where the double Fourier serie
adopted as basis functions was extended to the shallow-water model. The errors asso
with the method are evaluated using the standard test suite proposed by [26]. We have f
that as a whole the method gives comparable accuracy to the SHM for all cases consit
[10, 24]. Test results are summarized in Table Ill along with the results of the SHM. |
some cases the present method produces better results than the SHM (test cases
and 7) while it does not for other cases (test cases 1, 3, and 4). It is encouraging to note
the accuracy is improved by the present method for the test cases that have no anal
solutions (test cases 5—7). Among them the result of test case 7 is of particular import
because it consists of the observed flow.

A spectral filter consisting of high-order Laplacian operat&t$¢ndVv®) was designed
and successfully used to prevent nonlinear instability. The application of the filter t
field variable in the spectral space needsN76- 36N) operations. The memory space
for 6N? elements should be prepared for this filter. Other low-order filters such as I
monic or biharmonic-type may be used, for which less operations are necessary thar
employed in this study. It should be remembered, however, that low-order filters are
effective in filtering out high wavenumber components beyond the triangular truncatior
is recommended that low-order filters be used when rather a strong damping is nece
in the model.

Therelative efficiency of the present method can be estimated by comparing the oper:
countrequired for one time step. Witli 2 J transform grids{ = 2", wherer is a positive
integer), the total operation count for the SHM with the flux form is [4, 24]

Cstm = 5.93% + 46.8J%10g, J + 92872,

where we did not take into consideration some minor terms. The present method n
9 spectral transforms and 17 inversions at each time step. The inversions include sp
filtering for three predicted variables, semi-implicit time stepping, and procedures to
the streamfunction and velocity potential. The operation counts for the three major p

TABLE 11l
Normalized L? Error for the Standard Test Cases with Comparison to Spherical Harmonics
Models of T42 and T84
Model Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Cas
M42 .0220 1.1E-14 3.2E-08 .00146 1.5E-4 .0042 .0028
M84 .0082 6.2E-14 1.5E-09 .00064 3.0E-5 .0016 .0017
T42 .0110 2.0E-13 4.0E-10 .00082 9.6E-4 .0044 .0035

T85 .0050 3.0E-13 2.0E-13 .00040 7.7E-4 .0011 .0019
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TABLE IV
The Ratio of the Operation Counts

J Cstm/ Corm
32 0.68
64 0.90

128 1.28

256 1.99
512 3.29
1024 5.73
2048 10.32

can be written as follows:

A-FFT: 468J%log, J + 92.8J2,
¢-FFT: 315J%log, J + 14432,
Inversion: 1322 + 102J.

Then, the total operation count for the present method is
Corm = 78.3J%log, J + 3688J°2,

where we again omitted the minor terms. The computational efficiency as measured b
ratio of operation countSspym/Cprum is presented in Table IV. One finds that the advantag
in computational efficiency appears frain= 128 and increases with the resolution of the
model. Although the speedup of the efficiency is rather slow uhti# 256, the relative
efficiency is of significant level for the higher resolutions than this. It is certain that tl
advantage of the DFM will increase if we introduce a more efficient FFT algorithm than
currently used. Recently such a FFT algorithm, the so-called FFTW, can be found in Fi
and Johnson [5] and Frigo [6]. This algorithm is typically faster than all other publicly ava
able FFT algorithms. Therefore, the method using double Fourier series could contril
to the enhancement of computational efficiency, particularly for high-resolution mode
In addition to the computational efficiency, the present method requires a small storag
O(N?) elements, instead @ (N®) memory space as for the SHM.

In the present method the global mean is expressed as a sum of all spectral compo
with m = 0 while it is represented by only one spectral component for the SHM. For t
reason, the global mean of a field variable, e.g., the vorticity or the divergence, does
necessarily vanish during the time integration in the present method, even though it shc
Therefore we must change the value of the spectral compgnemt) = (0, 0) to satisfy
the condition of vanishing global mean. The modification of@e) component does not
affect the meridional differentiation of that variable, so no serious problem occurs in
course of time marching. Though being much larger compared to the SHM, the erro
the normalized global-mean mass typically remains on the orderdf10-2 even for the
fully nonlinear test cases simulated with moderate resolutions.

Finally we address an additional advantageous feature of the DFM not found inthe m
ods of [19, 21, 24] where the longitude—latitude coordinate system is not used. One ©
wants to perform a numerical experiment wherelthisld symmetry (or cyclic boundary
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condition) in the zonal direction is exactly maintained with> 1. This is accomplished
with ease in the new method, just by replacet®y* by €™ in Eq. (2.5a). But only odd
integers ofL are needed to keep the basis functions adequate for the pole conditions. It
be desirable in this problem to take the number of meridional wave components as s
cient to satisfyN > LM, if we consider the characteristics of eigensolutions of Laplacic
operator stated in Section 2.

The test results presented in this study suggest that the double Fourier-series me
could be extended to three-dimensional numerical models used for weather predictior

APPENDIX

Inversion of the Elliptic Equation with Legendre Polynomials

Consider the inversion of an elliptic equation such that
(1—eV?)8s = Hs, (A.1)

where the subscript s denotes the even mode (symmetric with respect to the equatc
the zonal wavenumben = 0. For this purpose we prepare a upper-diagonal matrof
(N/2+ 1) x (N/2+ 1) which satisfies

n
Pon(cos?’) =» "Cincos26’, n=0,1....N/2, (A.2)
r=0

using the formula of Legendre polynomials (e.g., p. 80 of Morigwttal. [15])

n—1
) (2r — 1l (4n — 2r — 1!
Pz”(cose)zzz_; (2 (4n — 2r)1!

L (@n—=1u?
cosdn —r)b +{(2n)”} (A.3)

whered’ (= — ¢) is the colatitude and

@l =2n2n—-2)---4.2 (A.4a)
@n-Hl=@n-1H(@2n-3)---3- 1L (A.4b)

The coefficientsy,’s (the coefficients of the Legendre polynomial expansiorHgrcan
be calculated from thel,, o's by combining Eq. (A.2) with the linear algebraic equations:

N/2 N/2
Hs = Han0COSDg =)  GonPan(cOst’). (A.5)
n=0 n=0

If we let dy, be the coefficients of the Legendre polynomial expansioddare get
ton = Gon/{1 + £2n(2n + 1)}. (A.6)

Then, theSa, o's are obtained from the relations in Egs. (A.2) and (A.5). Note that when't
global mean oH vanishes (i.e.go = 0), we haved, = 0.

The operational count for this procedure is ohly/2, which is about 5% of the whole
process associated with the inversion of all zonal wavenumber components.
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